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Abstract: Today’s computer networks become more complex than ever with a vast number of 

connected host systems running a variety of different operating systems and services.  Academia 

and industry alike realize that education in managing such complex systems is extremely 

important for computer professionals because, with computers, there are many levels of detailed 

configuration.  Configuration points can occur during all facets of computer systems including 

system design, implementation, and maintenance stages.  In order to explore various hypotheses 

regarding configurations, system modeling is employed – computer professionals and 

researchers build test environments.  Modeling environments require observable systems that are 

easily configurable at an accelerated rate.  Observation abilities increase through re-use and 

preservation of models.  Historical modeling solutions do not efficiently utilize computing 

resources and require high preservation or restoration cost as the number of modeled systems 

increases.  This research compares a workstation-oriented, virtualization modeling solution using 

system differences to a workstation-oriented, imaging modeling solution using full system states.  

The solutions are compared based on computing resource utilization and administrative cost with 

respect to the number of modeled systems.  Our experiments have shown that upon increasing 

the number of models from 30 to 60, the imaging solution requires an additional 75 minutes; 

whereas, the difference-based virtualization solution requires an additional three (3) minutes.  

The imaging solution requires 151 minutes to prepare 60 models, while the difference-based, 

virtualization solution requires 7 minutes to prepare 60 models.  Therefore, the cost for model 

archival and restoration in the difference-based virtualization modeling solution is lower than 

that in the full system imaging-based modeling solution.  In addition, by using a virtualization 

solution, multiple systems can be modeled on a single workstation, thus increasing workstation 

resource utilization.  Since virtualization abstracts hardware, virtualized models are less 

dependent on physical hardware.  Thus, by lowering hardware dependency, a virtualized model 

is further re-usable than a traditional system image.  If an organization must perform system 

modeling and the organization has sufficient workstation resources, using a differential 

virtualization approach will decrease the time required for model preservation, increase resource 

utilization, and therefore provide an efficient, scalable, and modular modeling solution. 
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1 Introduction 

Complex computer networks exist throughout the world.  In fact, computer networks are so vast 

and growing so quickly that colleges and universities offer degree programs focused upon 

computer system design and administration.  An entire training industry exists for computer 

certifications like Microsoft Certified Professional, Cisco Career Certifications and for other 

major products.  Further, there are even more computer certifications from organizations like 

SANS and CompTIA.  Academia and industry alike realize that education is important for 

computer professionals because, with computers, there are many levels of granular configuration.  

Configuration points range from the way a web browser displays a page to the fashion that a 

network adapter queues packets for delivery or acceptance.  In order to test hypotheses regarding 

new or different computer system configurations, system modeling occurs – computer 

professionals and researchers build test environments.  Anti-malware researchers might setup a 

quarantined computer network and launch potentially malicious software to understand its 

behavioral traits.  Software testers might setup multiple versions of different operating systems at 

many different configuration granularities to verify whether the software executes as expected in 

distinct environments.  System administrators might setup a duplicate server environment to 

assess the latest software patches and any negative impacts they cause.  System imaging and 

virtualization have both helped advance computer system modeling procedures and capabilities. 

This research aims to determine infrastructures that employ existing resources to use and archive 

large-scale heterogeneous system models by utilizing workstations to perform differential 

operating system virtualization.  By staging workstations with virtual machine templates, users 

can create, store, and restore differential virtual machines based on the templates.  Once a user 

instantiates this difference, they can execute the difference using primarily the workstations 

computing resources. 

1.1 Problem 

Large-scale modeling environments require systems that are easily configurable at an accelerated 

rate.  The cost to acquire, setup, and maintain modeling environments increases in terms of 

hardware and person-hours as the number of modeled entities increases.  Further, historical 

modeling solutions do not use available resources to their upmost potential.   
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Models that use hardware specific imaging can lead to a model that underutilizes computing 

resources since each workstation executes operations for a single operating system.  Unless the 

test requires each workstation to perform at one-hundred percent resource utilization, it is likely 

that a virtualization-based model could achieve higher hardware resource utilization.  To 

elaborate, if a test requires simulated user activity similar to web browsing or document 

authoring, a modeled entity should not be at full utilization at the processor, network, disk, or 

memory.  Further, these solutions, while useful in small environments and necessary for 

situations like hardware configuration testing and disk forensics, do not scale as the number of 

modeled systems increases because they require sufficient modeling hardware.  For example, if a 

tester needed to simulate fifty workstations running Red Hat Linux and fifty workstations 

running Microsoft Windows 2000, a hardware specific imaging modeling approach requires the 

tester to have one-hundred physical workstations dedicated to the test environment – this is not 

practical. 

Virtualization is one approach to utilize more efficiently the hardware available and thus 

decrease the need for excessive hardware.  System virtualization, in particular, has been gaining 

attraction in data centers.  This research doesn’t aim to focus on the benefits of data-center 

oriented virtualization, but rather points out that centralized virtualization infrastructures outright 

ignore the computing resources from a pool of workstations.  Many of these products do not 

account for the large number of high-powered workstations that are at the desk of developers, 

testers, researchers, students, and other computer professionals.  Imagine a software firm that 

owns a workstation for each of its 200 engineers.  Each workstation uses a 4 GHz processor and 

4 GB of memory.  Next, assume that each workstation cost $1,500 to purchase and deploy – 

putting workstation expenditures total $300,000.  Now, this firm notices that virtualization 

products might facilitate their testing phases and have to make a decision between workstation-

based or centralized virtualization.  How do you replicate the distributed 800 GHz of processing 

power and 800 GB of memory space available from the workstations at a central location?  If the 

firm replicated the computing resources of their workstations in a server closet, they would pay 

more money to purchase and deploy servers and, further, would be downplaying the capabilities 

of the workstations.  If they centralized their virtualization, then workstations would only 

execute non-resource intensive applications like browsers and editors; thus, underutilizing the 

massive amount of workstation computing resources. 
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Thus, explored in this research is a modeling solution that harnesses both workstation resources 

and virtualization. 

1.2 Importance 

Generally, modeling is important to research because it enables scientists ―to apply quantitative 

reasoning to observations about the world, in hopes of seeing aspects that may have escape the 

notice of others‖ (Silvert 2001).  Computer modeling is becoming much more important as 

systems become more complex.  This research could apply to, and therefore benefit, any 

organization that performs computing research tasks ranging from software assurance to systems 

education. 

1.3 Review of current research 

Research regarding the administration and execution of modeling environments has been 

prevalent in academician-led research.  Academicians are all wondering the same thing: how 

does one provide environments where users can apply and model computer systems concepts?  

Further, even if such environments are possible, how can one manage them in a low-cost 

fashion?  This section presents previous attempts at workstation-based virtualization for 

computer system modeling that include minimal guest operating system support, minimal usage 

of differential techniques, minimal performance analysis, no system deployment techniques, and 

lastly, out-dated concerns of expensive monetary costs. 

(Lei and Rawles 2003) raised practical cost and space concerns regarding space acquisition and 

computing resource utilization.  The central purpose of their study was to survey performance 

and cost of three virtualization technologies that would enable a more practical lab environment.  

Their research included both quantitative methods involving performance benchmarking with 

different storage and virtualization technologies and qualitative methods regarding cost analysis.  

They tested installation time of six virtual operating systems in three virtualization platforms 

VMware Workstation, Microsoft Virtual PC, and Netraverse Win4Lin utilizing six storage 

technologies on three separate host operating systems; further, they monitored resource 

utilization on the host machines during these installations.  Their experiment and analysis led to a 

conclusion that any virtualization technology coupled with a Microsoft Windows host operating 

system and a networked storage system was the most cost-performance effective environment to 
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enable applied system and networking administration learning.  This study is unique in that it 

quantifiably measures performance of the system at multiple points of interest: host resource 

utilization, virtual OS installation time, and network utilization. 

(Begnum et al. 2004) presented challenges their institutions experienced using traditional 

physical hardware to enable students to learn and apply system administration concepts.  The 

purpose of their study was to provide an environment where students could manipulate systems 

from an administrative context.  The authors described use of User-Mode Linux (UML) as a 

virtualization platform and My Linux Network (MLN) as a virtualization administration tool at 

university and industry environments.  The authors concluded that their use of virtualization 

through User-Mode Linux enabled students more efficiently learn system administration 

concepts.  The authors stated that they’re approach to enabling students to apply system 

administration concepts need only function ―as specified in the RFC’s‖ – therefore, they weren’t 

required to offer specific operating systems or applications, just something that ―worked 

correctly.‖  While their UML architecture enables system administration education in their 

institution, other organizations might require implementation of heterogeneous architectures 

including non-Linux operating systems. 

Educators at the University of Cincinnati (Stockman, Nyland, and Weed 2005) faced mobility 

and manageability issues surrounding a small deployment of workstation-based virtualization to 

teach networking and system administration material.  The purpose of their study was to present 

their findings regarding a centralized delivery of virtual machines to a lab environment including 

18 physical workstations to assist student mobility and staff system management.  Their 

experiment was centered on an Active Directory domain that included a network-attached 

storage (NAS) system and eighteen workstations.  The NAS ran Windows Server 2003 with dual 

866 MHz processing cores, 1.5GB of memory, 2Gbit Ethernet adapter and a SCSI RAID-5 

storage array and the workstations ran Windows Server 2003 each with a 2 GHz processor, 1 GB 

of RAM, a 1Gbit Ethernet adapter and Microsoft Virtual PC.  The test was to install an operating 

system to a virtual machine that resided on the NAS; there were three stages of workstation 

involvement: five, ten and eighteen workstations. The authors measured the time it took to install 

the operating system at each stage of workstation involvement and noted that there was no 

―noticeable‖ difference in installation time across the three stages.  The authors concluded that 
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mobility could be achieved with a central storage for student systems and that managing base 

virtual machines at the central storage was much simpler than distributing the base virtual 

machines to the workstations.  Regarding the test, the authors did not include quantifiable 

performance characteristics.  In addition to similar infrastructure management considerations, 

this research methodology will contrast their use of centralized base virtual machines by de-

centralizing base virtual machines.  The Stockman et al study did not mention the use of linked 

clones.  The use of Microsoft Virtual PC as a virtualization platform limits types of supported 

virtual operating system to Microsoft operating systems; other organizations might require 

implementation of heterogeneous infrastructures that include non-Microsoft operating systems. 

Other educators (Vollrath and Jenkins 2004) sought to address their problem of limited physical 

lab space; their lab consisted of 30 computers but was required to support nearly 60 students.  

They experienced logistical issues regarding lab space availability and concerns regarding high-

cost instructional sign-offs.  The goal of their study was explore implications and cost of using 

virtualization to alleviate their space and sign-off problems.  The study proposed the use of 

Microsoft Virtual PC as a virtualization platform and further utilizing the differentiation feature 

of Virtual PC for various procedural benefits.  Vollrath, a student at the time, evaluated the 

feasibility of their lab assignments in their test virtual environment.  Their conclusions were 

broad and included an out-of-lab grading process by saving student virtual machine differences 

to external media, in-class exams from equivalent virtual machines are probable and easier 

creation of lab assignments and hoped that their infrastructure would enable students to focus on 

management rather than installation of systems.  Vollrath and Jenkins study ostensibly used 

Microsoft Virtual PC to support Linux and Microsoft operating systems; only Microsoft 

operating systems are supported guest operating systems as detailed in the Microsoft Virtual PC 

specifications (Microsoft Corporation 2007a).  As stated previously, Microsoft Virtual PC might 

not be an option for organizations that require implementation of heterogeneous infrastructures 

that include non-Microsoft operating systems.  Their use of virtual machine differences to lower 

resource cost is a novel approach that this research project aims to utilize. 

(Gaspar, Langevin, and Armitage 2007) sought to debunk virtualization ―misconceptions‖ and 

clarify that virtualization for IT education is cost-effective and appropriate.  Other than detailing 

different virtualization technologies such as hardware emulators, full virtualization, and 
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paravirtualization, the core purpose of their study was to present their virtualization 

implementation, known as SOFTICE (Scalable, Open source, Fully Transparent and Inexpensive 

Clustering for Education).  The authors state that in using open source applications (UML/MLN) 

and not relying on virtual disk delivery to students as in (Stockman, Nyland, and Weed 2005) 

makes their system more appealing and ―accessible over the internet.‖  (Gaspar, Langevin, and 

Armitage 2007) argue that investing computing resources for workstation-oriented virtualization 

is an ―investment [that] will sit mostly idle and unused.‖  Thus, (Gaspar, Langevin, and Armitage 

2007) assume that institutions do not already have computing resource capacity to utilize 

workstation-powered virtualization.  Finally, (Gaspar, Langevin, and Armitage 2007) do not 

address practical environments that implement non-Linux platforms. 

(Stackpole et al. 2008) addressed the lack of evaluation for decentralized virtualization that 

supports scalable, heterogeneous environments for use in system administration education.  They 

described the problems with a full operating system imaging solution.  The crux of the paper is 

the proposed usage of linked clones for storage of student-customized virtual machines.  The 

authors demonstrate that utilization of storage, network, and management resources would 

decrease significantly because of the differential nature of the student data.  This paper is the 

basis for this thesis; this research aims to quantify the claims Stackpole et al. by measuring 

performance and documenting management procedures. 

1.4 Document Outline 

The remainder of this document is organized as follows.  Chapter 2 presents concepts basic to 

understanding the research.  In chapter 3, the research environment and experiments are 

described.  Following in chapter 4, results are presented and analyzed.  Finally, conclusions are 

drawn in chapter 5 and the research outlook is discussed in chapter 6. 
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2 Background 

Traditionally, experimenting with computer systems meant one required either additional 

computer hardware.  By having additional hardware, additional physical systems could be 

constructed and used in experiments.  Boot loaders were developed to enable multi booting.  

Multi booting involves installing more than one operating system to a workstation.  After 

installing more than one operating system and upon starting the workstation, one can select 

which operating system to execute; thus, one can experiment with multiple logical systems on 

one physical system.  Imaging, a process of duplicating hard disk contents, proves useful in 

system modeling.  Using disk imaging, one can preserve the state of a disk by copying the 

contents to another disk or by archiving it in a single file.  With disk imaging, one can easily 

configure similar workstations to have the same disk contents and, therefore, the same operating 

system and software configuration.  Disk imaging has been popularized through products from 

companies like (Symantec 2008) and (Acronis 2008) and open source solutions like (Clonezilla 

2008).  Further, to increase efficiency when copying the same disk image to many disks, these 

products harness the abilities of multicast IP transmissions.  Multicasting enables a server to send 

one copy of the disk image to many workstations, rather than sending many copies to many 

workstations.  By only requiring the server to access and send the image once, the server 

requirements are decreased.  Therefore, multicast enables scalable imaging and is useful when 

imaging many similar workstations.  However, in the end, spare hardware is costly and multi 

booting or system imaging does not fully utilize the workstation hardware.   

Newer to system modeling is the concept of virtualization, or abstracting computer hardware.  

Different types of virtualization exist, but for the purposes of this research, it is important that the 

virtualization platform enable the concurrent execution of multiple operating systems on a single 

workstation.  The virtualization platform used in this research, VMware Workstation, abstracts 

nearly all of the underlying hardware.  ―VMware Workstation virtualizes I/O devices using a 

novel design called the Hosted Virtual Machine Architecture […] that takes advantage of a pre-

existing operating system for I/O device support‖ (Sugerman et al. 2001). 

In this architecture, the CPU virtualization is handled by the VMM.  A guest application 

or operating system performing pure computation runs just like a traditional mainframe-

style virtual machine system.  However, whenever the guest performs an I/O operation, 
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the VMM will intercept it and switch to the host world rather than accessing the native 

hardware directly.  Once in the host world, the [virtualization application] will perform 

the I/O on behalf of the virtual machine through appropriate system calls. 

This type of virtualization is also employed by Xen; however, the platforms differ in how 

processor instructions are abstracted.  Hardware-assisted virtualization, supported by AMD-V 

and Intel VT, offer full, consistent processor abstraction at a loss of memory throughput 

(Nakajima 2007) and require special hardware.  In this research, VMware Workstation enables 

the execution of multiple virtual machines per workstations, so one can achieve a higher 

utilization of workstation resources.  Therefore, by coupling virtualization and disk imaging, one 

can configure many workstations with multiple virtual machines and increase the utilization of 

modeling resources.  To optimize resource utilization further, many virtualization products offer 

the ability to create differential virtual machines.  (Stackpole et al. 2008) provide the following 

an explanation of linked clones, which are VMware’s implementation of differential virtual 

machines, and offer insight as to how differential virtual machines optimize storage 

requirements.   

The use of VMware’s linked clones is critical to the efficient use of network and storage 

resources.  VMware defines a linked clone as “a copy of a virtual machine that shares 

virtual disks with the parent virtual machine in an ongoing manner […while…] changes to 

the disk of the linked clone do not affect the parent.”  While the size of a modified operating 

system image is the sum of the size of the operating system and the modifications, the size of 

a linked clone is merely the size of the modifications.  When saving modifications, linked 

clones consume less storage space; therefore, linked clones more efficiently use disk space 

than full system images. 

At a minimum, computer networks require network services that offer high-level features for 

basic network usability.  To enable any sort of communication, computers must address others; a 

basic network service, such as a DHCP server, is useful because it dynamically assigns addresses 

to computers.  The domain naming protocol (DNS) helps humans to address computers by 

mapping a character based name to a computer IP address.  Further, any computing environment 

where user accountability or access control is required, identities must be authenticated; 
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therefore, users must prove they are whom they claim.  After authentication, certain users might 

be privy to certain information but not others.  Access control provides a mechanism by which 

administrators can specify which users have access to which information.  Commonly, many 

users have access to the same information.  Thus, information sharing is employed.  Just as 

libraries share information, books, from one location, computers can share information from one 

location, servers.  By coupling access control with information on a commonly accessible server 

such as a file server, administrators can restrict and permit certain users to access a single piece 

of information.  These network features are basic requirements of any computer network; the 

proposed modeling environment is no exception. 
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3 Research Design 

In this chapter, an environment that supports differential virtualization on shared-use 

workstations is presented.  Then, three experiments using the environment are detailed.  In the 

first experiment, this research compares a workstation-oriented, virtualization modeling solution 

using system differences to a workstation-oriented, imaging modeling solution using full system 

states; the solutions are compared based on computing resource utilization and administrative 

cost while increasing the number of modeled systems.  The second experiment attempts to 

deduce storage requirements for a specific differential virtualization approach.  The third 

experiment demonstrates the capabilities of an individual workstation to operate many virtual 

machines.  In section 3.1, overall assumptions and limitations for all experiments are discussed.  

Section 3.2 details environment implementation.  Sections 3.3, 3.4, and 3.5 detail the three 

separate experiments.  The results and analyses are presented in chapter 4. 

3.1 Assumptions and Limitations 

This research does not intend to determine whether clustered server-grade virtualization or 

workstation-based virtualization is better suited for modeling.  Therefore, it is assumed that this 

research applies to organizations that have a substantial number of workstations whose combined 

processing ability and memory space is underutilized. 

It is assumed that there are benefits to preserving model state and that saving progress is 

important ability that, when technically feasible, enhances the user experience.  Thus, a large 

portion of this environment is focused on preserving the state of a model.  

In order to measure user experience with a particular environment, it is safe to assume that if 

users spend less time creating, saving, and restoring the model, they can spend more time 

working with the model.  It is assumed that having more actual time to use and manipulate the 

model is beneficial to modeling.   

The usability of a model is independent of the preparation and archival method.  Therefore, it is 

also assumed that even though many virtual operating systems can execute on a physical 

workstation, each virtual operating system should behave and respond as well as the same 

operating system installed in a traditional, physical sense; this means that the model has realistic 
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usability.  Additionally, software installed on models may behave differently since software can 

detect its operating environment.  Thus, it is also assumed that modeled processes and systems 

do not purposely behave differently within a virtualized model.   

A rather large assumption is that the administrators employ Microsoft Active Directory with 

Microsoft DNS, DHCP, and File Services.  Active Directory offers seamless authentication and 

access control, two features that the shared modeling environment requires.  Further, it is 

assumed that, since Active Directory is a highly pervasive technology, there is no need to 

describe a basic setup of an Active Directory instance.  In addition, VMware Workstation is the 

chosen virtualization platform for this environment because it offers extensive guest operating 

system support (VMware, Inc. 2008a). 

For the purposes of testing and demonstrating a research environment, principles like least 

privilege, role based policy enforcement, resource quotas, and other areas that require attention 

in a practical deployment of such a modeling solution are ignored.  It is assumed that those 

implementing a true instance of the research environment will pay attention to many security-

focused areas that this research ignores.  Throughout the remainder of this chapter, configuration 

points that require more attention in a practical deployment are annotated. 

In modeling this research, scope limitations are required.  There are initial components, such as 

workstations, servers, network hardware, storage solutions, and operating systems, from which 

samples must become determined.  While modifying the configuration of components in the 

sample might yield different performance results, this research used the standard hardware 

configuration from the sampled laboratory yet varies operating systems on the workstations.  The 

existing components in the Systems Administration laboratory for the NSSA department at RIT 

are used.  The laboratory contains twenty benches each with four workstations.  The eighty 

workstations operate a 3.4 GHz processor, 3 GB of memory, 110 GB hard disk, and two one-

gigabit network adapters.  Each workstation has a one-gigabit network connection to a data 

subnet while the other adapter connects to the bench hub.  A Cisco 6509 with one-gigabit 

capable ports provides the laboratory network switching and routing features.  A server, noted as 

Jabba SRV in the diagram below, running Windows Server 2008 is equipped with 8 GB of 

memory, an Adaptec 2820SA RAID adapter, five hard SATA disks in a RAID 5 array, and an 
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Intel quad-gigabit network adapter offers networked file services for the laboratory using a four-

gigabit bandwidth network team.  Finally, the Active Directory infrastructure is comprised of a 

set of virtual machines running on a VMware ESX cluster of Dell PowerEdge 2850 rack mount 

servers, one of which is noted as Vader SRV in the diagram below.  Figure 1 portrays the 

laboratory from a logical perspective; insignificant physical entities are not illustrated. 

 
Figure 1 – Sample lab diagram 
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3.2 Environment Overview 

This overview describes, explains, and justifies the procedures required to implement an 

environment that supports differential, workstation-based virtualization for mobile computer 

system modeling.  The remaining subsections describe an implementation of the environment. 

The ideal environment stores differential virtual machines at a highly available storage solution 

for two reasons.  The first, mobility, is a necessary feature for modeling environments when 

there are more users than workstations.  The second reason is to uphold data redundancy – store 

important data in some way to decrease the risk of data loss or inaccessibility in the unfortunate 

event of infrastructure error or failure.  This is not to say that linked clones must be stored at a 

highly available storage solution all of the time.  In fact, this research concludes that caching 

linked clones on workstations prior to executing might be more feasible. 

On the workstations, an operating system and template virtual machines are installed prior to 

user interaction.  Once a user has an authorized account and networked home directory, they can 

initiate logon sessions with at least one workstation.  Once the user has initiated at least one 

session, they can create linked clones within their networked home directory.  Once the linked 

clones are created, they can be configured and powered on — this can be considered the start of 

a user’s modeling session.  As the user manipulates their linked clones, their modifications are 

stored to the network share whenever the virtualization software dictates writes to the virtual disk 

or virtual memory.  At any time, the user can snapshot, suspend or power off their linked clone 

to save the current state of their model to the file server — this can be considered the end of a 

user’s modeling session.  Once the modeling session is complete, the user can end their logon 

session.  Later, when the user returns, they initiate at least one logon session to restart their 

modeling session by opening, configuring and powering on their linked clones. 

3.2.1 Network Services 

In chapter 2, the usefulness of network features like authentication and access control are 

presented.  Using Microsoft Active Directory, Domain Name Services, and File Services, one 

can accomplish these features.  However, this research environment does not require detailed 

configuration of these services beyond their basic operating state.  Therefore, this research will 

not discuss their installation and configuration at length.  It is pivotal to configure Active 
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Directory and Domain Name Services prior to other services because all remaining services rely 

on Domain Name Services to access Active Directory and further rely on Active Directory for 

authentication and role-based access control.  This research recommends configuration of File 

Services prior to user creation. 

The creation of users is an important and potentially time-consuming process.  For this 

environment, it is important that each user obtains control of a home folder and that this home 

folder is automatically mapped when the user performs logon to a domain-joined workstation.  

The home folder is the central location where the user stores their linked clones.  It is 

recommended to use a script to automate a majority of the process and prevent user-error.  Such 

a script would likely utilize cacls.exe and icacls.exe to modify access lists on the home 

directories.  Further, the directory services utilities are included in Server 2008 as the feature, 

RSAT-ADDS.  The directory service utilities assist with managing AD objects and fan facilitate 

the user creation process.  The add utility, dsadd.exe, enables object attribute configuration upon 

creation.  When dsadd.exe is used in context of user additions, the hmdir attribute signifies the 

home folder and the hmdrv attribute signifies to which local drive the hmdir will be mapped 

when the user logs onto a workstation.  For example, the command in Figure 2 adds a user 

named john to the default users’ organizational unit with a home directory of \\server\share\.  

The share will be mapped to Z:\ when john logs on to a domain-joined workstation.  In addition 

to the directory service tools, many Microsoft programming and scripting languages offer 

façades to the Active Directory Services Interfaces (Microsoft Corporation 2008g). 

dsadd user "CN=john,CN=Users,DC=koppe,DC=thesis"  

-hmdir \\server\share  

-hmdrv z: 

Figure 2 – Home directory specification upon user creation 

3.2.2 Workstation Deployment 

The Dynamic Host Configuration Protocol, DHCP, leases an IP address to a computer that 

requests an IP address.  For this thesis, it is assumed that DHCP is already in place and that 

administrators install Windows Deployment Services, WDS, on a separate server.  This section 

begins by detailing what modifications to the DHCP service configuration are necessary to 

cooperate with a Windows Deployment Service instance executing on a distinct IP address.  
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Next, this section details the configuration of a WDS server to enable deploying operating 

systems to workstations. 

There are many important DHCP configuration concepts.  Since DHCP leases IP addresses, 

DHCP traffic does not natively traverse networks.  However, DHCP relay agents perform this 

multi-network action.  Further, DHCP has a notion of lease scope.  This means that 

administrators must configure the DHCP service to offer and acknowledge a range of addresses.  

For the purposes of this thesis, network relaying and scope configuration is not of interest, but is 

required.  For network usability purposes, practical implementations need to consider these 

configuration areas.  For the purposes of illustrating how DHCP interoperates with WDS, 

configuration is performed on an entire DHCP server scope; however, one could extend these 

configuration steps to smaller scopes and more servers.  Using the netsh utility (Microsoft 

Corporation 2005), one could dynamically configure DHCP settings at a specific time or through 

user-initiated script.  For example, an administrator might only want WDS to function during a 

specific period – one way to achieve this is through automated, scheduled netsh tasks. 

WDS requires three specific DHCP configuration settings including the address of the WDS 

server, a PXE specification, and the boot filename (Microsoft Corporation 2008c).  The 

following screenshot, Figure 3, shows the specific DHCP options configured to direct PXE 

clients to download a specific boot file (boot\x86\wdsnbp.com) from a specific WDS server 

(192.168.66.150). 

 

Figure 3 – DHCP options required for WDS 

Statically configuring the boot\x86\wdsnbp.com does not limit deployment to x86 architectures; 

architecture detection commences after the boot program executes.  Further, since DHCP is on a 

separate server from WDS, the administrator must create and define option 60 using either netsh 

or the graphical interface.  Figure 4 below shows the netsh commands to create and configure 

option 60. 

netsh Dhcp Server Add Optiondef 60 "PXEClient" STRING 0 comment="PXE 
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Support" "PXEClient" 

netsh Dhcp Server set optionvalue 60 STRING "PXEClient" 
Figure 4 – Netsh commands to configure DHCP option 60 

Now that DHCP directs PXE clients to the WDS server, the WDS server needs to be configured.  

The Windows Deployment Services (WDS) ―enables rapid deployment of Windows to 

computers via network-based installation‖ (Microsoft Corporation 2008c).  This research uses 

WDS to install the workstation operating systems.  Since it offers multicast support, the version 

of WDS that this research uses is a role in Windows Server 2008.  Use servermanagercmd.exe, 

as illustrated below in Figure 5, or the Server Manager graphical console to install the role.   

servermanagercmd -install WDS 

Figure 5 – Servermanagercmd to install WDS 

Once installed, the server requires initialization.  Initialization uses servermanagercmd.exe or the 

Server manager graphical console.  The initialization process includes the creation of the Remote 

Installation share, DHCP option configuration, and PXE response configuration.  Microsoft 

recommends placing the Remote Installation share on a different volume than the operating 

system.  This research assumes the DHCP server exists at a separate address; therefore, the 

default DHCP configuration is acceptable.  Finally, set PXE to respond to all unknown and 

known clients.  The value of this configuration instructs the WDS server to permit access to 

specific workstations.  Since the PXE response setting is an access control, consider security 

when configuring this in a practical environment.   

Upon initialization, WDS suggests adding images.  In WDS, there are different types of images; 

however, this research details usage of three types: install, boot setup, and boot capture images.  

The initialization wizard asks for an image source directory such as one found on Vista SP1 or 

Server 2008 media.  By providing the sources directory, one boot setup image and some install 

images are added.  A boot setup image enables the installation of an install image.  For example, 

a workstation boots from the network and loads the boot setup image.  Then, the boot setup 

image installs and configures a custom install image to the workstation.   

To deploy custom images to the workstations in the modeling environment, an administrator can 

make a custom install image through a process known as capturing.  First, a capture image is 

created on the WDS server.  A capture image is created using wdsutil.exe, as illustrated in Figure 

6 below, or the Windows Deployment Services console.   
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wdsutil /new-captureimage  

/image:"Microsoft Windows Longhorn Setup (x86)" /architecture:x86 

/destinationimage /filepath:"c:\capture.wim" 

 

wdsutil /add-image /imagefile:"c:\capture.wim" /Imagetype:boot 

/Name:"Microsoft Windows Capture (x86)” 

Figure 6 – Creating and adding a capture boot image 

The capturing process is similar to a traditional system imaging process.  An operating system is 

installed on a reference computer and customizations are made.  Then, the system must be 

prepared with the Microsoft Sysprep utility (Microsoft Corporation 2008c).  While the Sysprep 

utility is included in Vista, it must be downloaded for XP as a part of the Deployment Tools 

package (Corporation 2008). 

%systemroot%\system32\sysprep\sysprep /oobe /generalize /reboot 

Figure 7 – Vista sysprep command to prepare a system for capture 

sysprep –mini –reseal -reboot 

Figure 8 – XP sysprep command to prepare a system for capture 

Once prepared, the workstation reboots and begins the PXE process.  To arrive at the boot 

selection screen, press F12 as directed in Figure 9 below. 

 

Figure 9 – PXE process requiring F12 to boot 

After hitting F12, the customized operating system on the workstation can be captured by 

selecting the capture image from the network boot screen as depicted in Figure 10 below.  Note 

that the capture image will be displayed with the name specified when the image was added (see 

Figure 6 on page 17). 
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Figure 10 – WDS Boot Manager 

WDS first captures the system image to a drive local to the workstation; therefore, there must be 

a volume with sufficient free space attached to the workstation prior to capturing.  The next 

figures, Figure 11, Figure 12, and Figure 13, illustrate the capture process.  Note that in Figure 

12 the Location must have sufficient free space to store the capture image.  In this example, C:\ 

is a 20GB volume with 4GB of used space.  This means that the image will be approximately 

4GB.  Since there are 16 GB of free space on the volume, the image can be created successfully 

before being uploaded to the WDS server. 

 

Figure 11 – Capture Wizard, Capture Source 
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Figure 12 – Capture Wizard, Capture Destination 

 

Figure 13 – Capture Wizard, group choice after authentication 

After being captured to the local system, the custom install image is added to the WDS server 

and can be deployed to one or many workstations.  This deployment process includes booting 

from the network, selecting a boot image, authenticating identity, selecting an install image, 

installing Windows, renaming the workstation, and joining the Active Directory domain.  The 

deployment process can be performed manually or automatically.  Manual deployment might 

take place when deployment is required for a small number of workstations.  A manual 

installation for a small number of workstations is not time consuming and is similar to the 

capture process.  This research suggests scripted multicast deployment of a specific install image 

to workstations using the massImage.ps1.  This script automates the WDS configuration steps 

necessary to multicast an install image.  The script requires PowerShell 2.0 CTP (Microsoft 

Corporation 2007b) and a default.xml similar to the one in appendix 7.6 on page 58.  The 
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deployment process and other WDS-related processes are detailed in a Microsoft TechNet 

article, titled Windows Deployment Services Processes (Microsoft Corporation 2008d); further, 

the automated steps of the massImage.ps1 script are documented in the script heading comments 

(see appendix 7.5, page 51).  An unattended installation can become very complex.  The example 

in the appendix, default.xml, installs a Windows Vista image to a 20GB C:\ partition on the first 

disk, creates and formats a second partition P:\ with the remaining space on the first disk, 

renames the computer according to the WDS naming pattern, and joins the domain 

TESTDOMAIN with credentials TESTUSERNAME and TESTPASSWORD.  In a true 

environment, care should be taken to assure that the TESTUSERNAME role has limited 

abilities; see Performing Unattended Installations from TechNet (Microsoft Corporation 2008e) 

for detailed information about automating installation. 

In order for the workstations to name according to a naming pattern, they must either be 

prestaged or started in a specific order.  WDS uses Active Directory to name computers.  During 

the deployment process, WDS sets the workstation name based on the hardware UUID or the 

network adapter MAC address.  If either of these is known, the workstations can be prestaged 

using wdsutil.exe (included when the WDS-RSAT feature is installed in Windows Server 2008).  

If not, WDS can assign names based on a defined pattern.  For example, one could define a 

pattern WS%02# that would cause WDS to name new workstations WS01, WS02, WS03, etc.  

Ultimately, if workstation names are important to an organization, WDS offers flexible 

configurability to the workstation naming process. 

3.2.3 Virtual Machine Templates 

Virtual machine templates are the basis for linked clones.  Configuring a template requires a few 

extra steps beyond basic virtual machine creation steps.  Once the virtual machine is created, the 

virtual operating system in installed and customized, a snapshot must be taken.  Once the 

snapshot is taken, the virtual machine must be configured to template mode.  This is completed 

in the virtual machine settings dialog in the options tab as shown in Figure 14 below.  

Alternatively, a snapshot can be performed via the command line using the vmrun.exe utility and 

by adding templateVM = "TRUE" to the .vmx configuration file. 
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Figure 14 – Enabling template mode 

Once the templates are created, they must be stored on each workstation.  By storing virtual 

machine templates on each workstation, the environment offers a reduction in the time required 

for user model restoration (the experiment detailed in section 3.3 proves this claim).  The task of 

restoring the base operating system or virtual machine template is removed from the user and 

given to management.  The deployment process, as discussed in the previous section, is the 

opportune time to move virtual machine templates to the workstations.  Prior to capturing the 

custom install image, the administrators could inject the virtual machine templates to a folder in 

the custom image. 

After initial deployment, a process in which administrators can add, update, or replace virtual 

machine templates is ideal.  If a new operating system is to be modeled or a template is 

configured improperly, the templates need to be updated on each workstation.  There are a 

number of ways to achieve this.  One way is to re-deploy the operating systems with an updated 

image.  This is, however, time consuming and inefficient.  It is further effective to copy the 

template modifications to each workstation instead of the entire operating system or all of 

templates.  Using Robocopy.exe, an administrator could script copying just the differences 

between a virtual machine template repository and the template folder on each workstation 

(Microsoft Corporation 2008a).  Undoubtedly, other third party utilities and file transfer 

protocols exist to perform such differential copying.  However, they all perform the copying in 

parallel or series – unless they use multicasting.  WDS offers the ability to multicast data to a 

workstation outside of an installation process.  This is accomplished using a custom namespace, 
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created with wdsutil.exe, and having workstations join namespace with wdsmcast.exe.  

Workstations can join the namespace while executing their normal operating system if Windows 

Vista SP1 and Server 2008 AIK is installed (Microsoft Corporation 2008b).  Otherwise, a custom 

boot image can be created on any server where the latest AIK is installed.  The process of 

creating the custom image is detailed in a TechNet article titled Using Transport Server 

(Microsoft Corporation 2008f) in the section titled Using a Transport Server for Multicasting.  A 

multicast namespace is created in much the same fashion that a multicast transmission is created.  

A script similar to massImage.ps1 could be created to facilitate the process of multicasting 

updated templates to all modeling workstations.  Firstly, a template image must be created 

because multicasting is optimized for single file transfers (Sadler 2007).  A template image can 

by making a differential-update version of the template repository in a folder using 

Robocopy.exe.  Then, that directory must be mounted to a volume letter using subst.exe.  

Finally, the virtual disk can be captured using imagex.exe, from the Windows Server 2008 AIK.  

Once the template image is made, the image should be stored in the WDS REMINST 

subdirectory images.  Then, the namespace must be created using the path to the images 

subdirectory as the /configstring parameter in a wdsutil.exe /new-namespace command.  

If using a custom boot image, the image should have wdsmcast.exe, imagex.exe, 

wimfltr.sys, and wimfltr.inf along with a startup script; these files come with Windows 

Server 2008 AIK.  There is an example Win PE startup script, startnet.cmd, in appendix 7.8, on 

page 68.  However, this method might require the workstation to have twice as much free space 

as the change in size of the template repository if additions or updates are required.  For 

example, if an administrator added ten templates to the template repository and the repository 

size increases by 15GB to a total of 75GB.  Then, if the hard disk in each workstation has 60GB 

of templates and 20GB of free space, this solution will not work.  This solution requires that the 

workstation have 15GB of free space for the image to be stored by wdsmcast.exe and then 

requires an additional 15GB of free space for the extraction of the templates.  However, if there 

is sufficient temporary space, this update method is network-optimized because of the multicast 

transmission and size-optimized because of the differential image.  There will always be a time-

tradeoff to analyze when choosing a template update process.  If the update is small, it might be 

worthwhile to Robocopy in series rather than using the wdsmcast.exe approach. 
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3.2.4 Using the Environment 

When a user has a valid account on the domain, they can begin to use the modeling environment.  

A user can perform three basic tasks: create linked clones, use linked clones, store linked clones.  

Thus, a user must be trained in linked clone management.  A high-level usage perspective is that 

users create and use linked clones to model systems and processes.  Users can store their linked 

clones on a centralized storage solution to retain a specific system state.  Creating linked clones 

in VMware Workstation is straightforward: the user opens the template and selects Clone from 

the VM menu as shown in Figure 15.  It is crucial that users understand they are to use linked 

clones and not full clones.  In the cloning process, a user has the option to create a full clone.  

However, this defeats the purpose of differential virtualization and users must be educated. 

 

Figure 15 – Clone selection 



24 

 

The user then selects the template’s snapshot and the linked clone option.  Lastly, the user must 

specify a name and location to save the linked clone.  There are two optional locations for linked 

clones: the workstation or the file server.  Linked clones should be stored in specific locations 

based on their state.  Linked clones exist in either the on or off state.  When off and not active in 

a model, linked clones should be stored on the file server in order to uphold the mobility 

requirement of the shared modeling environment.  However, during linked clone use, location is 

a critical to usability.  As detailed in the experiment in section 3.4, the computing resources 

required for direct modification of linked clones on a file server exceed those offered by the 

sampled file server.  Thus, location during use must carefully be considered based upon file 

server capabilities. 

If the file server is capable of sustaining reasonable disk throughput when many linked clones 

are being modified directly from the file server, this is the optimal modification approach.  When 

users save, open, and use their linked clones directly from the file server, this is called the direct 

modification approach.  However, if the file server is not capable of sustaining sufficient disk 

throughput, the users must save and use their linked clones on each workstation.  It is possible to 

facilitate caching of linked clones on workstations using Windows Offline files or other third 

party applications; however, it is not difficult for users to copy linked clones selectively to their 

desktop for use in a modeling session.  This approach can be considered a cache-and-update 

approach.  The linked clones must be cached to the workstation before the modeling session, 

executed on the workstation during the modeling session, and updated on the file server after the 

modeling session.  The other approach, where linked clones are stored and used directly from the 

file server is called the direct modification approach. 

Once the user has created, and possibly cached, the linked clone, using VMware Workstation as 

their personalized modeling environment is nearly as straightforward as using a traditionally 

hardware-specific system.  See the VMware Workstation documentation for usage instructions 

(VMware, Inc. 2008b). 

3.3 Optimizing Restoration Time 

As discussed earlier, users perform basic tasks in the modeling environment: create, use, save, 

and restore models.  Consider restoration time as the amount of time it takes a user to restore a 
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modeling environment from a stored state.  This process includes the workstation startup, user 

login, downloading their stored model, and finally reaching a stage where their model is usable.  

Logically, by reducing the time it takes to restore a model, the user has more time to manipulate 

and work with the model. 

The purpose of this experiment is to determine the amount of time it takes to restore many 

modeling environments using a traditional restoration technique as well as how long it takes to 

restore similar modeling environments using two variants of the differential virtualization 

approach.  By manipulating restoration approach and workstation operating system, one can 

determine how the dependent variable of restoration time is affected. 

In this experiment, the model environments are pre-configured and saved for a number of 

simulated users ranging from one to sixty.  The models are set to automatically login and execute 

a startup script.  This script will write a file to the file server in the folder specific to the 

workstation.  Therefore, by noting the time that the systems started and automatically creating a 

file when the model is operational, one can understand how the restoration time changes with 

respect to the number of model environments for each restoration approach and configuration.  

With intent to correlate component ability with restoration time, the performance of the file 

server is measured during restoration experiments; specifically, the disk operations per second, 

disk bytes per operation, disk queue length, and network bytes transferred per second.   

There are many assumptions for this experiment.  Restoration time is considered in this 

experiment; however, the time to save a model is similar to restoration time and save time can be 

assumed dependent on the configuration in the same manner as restoration time.  It is assumed 

that there exists a pre-restoration process.  This means, that the time it takes a user to situate 

themselves at a set of workstations on which they will restore their model is entirely a different 

stage of the modeling experience.  It is assumed that there exists a post-restoration process.  This 

means that the user must interact with the restored modeling environment in a usable fashion.  

While usability of the model plays a role in this experiment, it is not the primary intent.  As users 

modify a system instance within a model, the size of the model can increase.  It is assumed that 

restoration time increases somewhat linearly as users make more modifications to their models.  

To that end and for expediency, the model-specific modifications are limited in this experiment.  
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The Ghost images and linked clones used in this experiment are Windows 2003 Server based 

with no user-specific modifications other than the small scripts to automate the experiment for 

the purposes discussed in the previous section. 

In order to automate the experiment, certain pre-experiment configurations are necessary.  IP 

addresses are unique per physical workstation.  A DHCP server assigns specified IP addresses to 

workstations based on the MAC address of the workstation’s physical hardware.  A unique 

domain user account exists for each workstation.  Each domain user account has full access 

control of exactly one folder on the file server.  In this folder, there exists a Ghost image and a 

linked clone.  For the ease of this experiment, all domain users can read these folders.  Next, the 

workstations are configured such that they first attempt to boot from a network location and then 

the local disk.  The sample laboratory has eighty workstations and some are not available due to 

configuration errors or hardware issues.  Therefore, at most sixty models are used in this 

experiment. 

To illustrate how restoration time changes with different approaches and configurations, three 

heat sizes, one, thirty, and sixty, are designated.  The size of the heat is representative of the 

number of unique systems modeled in the environment.  Therefore, a heat with a size of sixty 

signifies the use of sixty workstations to achieve sixty unique modeled systems.  This is 

analogous to sixty users each modeling a unique single operating system.  Three restoration 

approaches are considered: Symantec Ghost system imaging, Windows Vista based cached 

differential virtualization, and Windows XP based cached differential virtualization.  In all 

configurations, Windows Server 2008 is used as the operating system executing on the file 

server.  Effectively, this experiment is a cross-sectional survey with nine resulting datasets. 

The technical objective of the experiment is to have one result file per workstation per heat.  This 

way, statistical analysis can be performed on a group of data points from a specific experiment.  

At the end of the heat, a script finds the result files, calculates the difference between the start of 

the test and the creation time of the result files, and generates a row in a results database for the 

each workstation.  Each row contains the test type, heat size, workstation name, and restoration 

time in seconds.  The following example database record signifies that a workstation named 

maul101 took approximately 8935 seconds (or, approximately 2.5 hours) to restore using the 
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Ghost imaging approach while 59 others simultaneously restored.  A simple script, called 

batchanalyze.ps1, was written to perform basic data analysis a comma-delimited database using 

this schema.  For longevity, the result database is included in appendix 7.1, on page 44. 

traditional,60,maul101,8935.3245675 

Figure 16 – Restoration experiment result record example 

At the beginning of the test, each workstation is pre-configured and powered off.  To start the 

test, a script called starttest.ps1 is executed on the file server.  This script gathers input regarding 

the test type and heat size.  Upon input, the script notes the time and in quick succession, the 

specified number of workstations are manually powered on.  Starting the workstations will 

continue down one of three avenues:  

1. Automatic imaging using Symantec ghost 

2. Windows Vista boot process 

3. Windows XP boot process 

The traditional preparation technique uses Symantec Ghost to restore a single operating system 

to a single physical machine.  In order to automate the imaging process, a special PXE boot 

image was created.  Since the workstations are configured to boot from the network, once the 

workstation starts, it downloads and executes this special PXE boot image.  The special PXE 

boot image loads DOS, loads necessary drivers and maps a network folder based on the IP 

address of the workstation.  Then, each workstation downloads a unique Ghost image from the 

file server to its local disk.  It is crucial that each workstation reads a separate Ghost image in 

order to simulate a realistic restoration process.  When two users restore their unique 

environment, they are reading a distinct set of files, not the same set.  Therefore, each 

workstation will copy a unique Windows 2003 R2 image to their hard drive and reboot.  On 

startup, a local user will automatically login and execute a script.  This script will map a network 

drive based on the IP address of the workstation and write a file to that network drive as 

described earlier.   

In the differential virtualization approaches, both Windows Vista and Windows XP are used as 

the workstation operating systems.  In order to accomplish the test, the system images were 

prepared in a similar fashion as the images from the Ghost restoration approach.  However, in 
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these tests, workstations are domain-joined and configured to auto-logon based upon the name of 

the workstation.  When the workstation starts, the domain user specific to that workstation 

automatically performs the logon process and their network folder maps to Z:\.  Then, a script 

empties the user’s desktop, copies the linked clone from Z:\ to the user’s desktop, and starts the 

linked clone.  Further, once the linked clone starts, the same script runs a script inside the clone 

that writes the file to the workstation-specific folder on the file server. 

3.4 Direct Modification Characterization 

As described earlier, an optimal environment is one where linked clones are modified directly on 

a file server, not one that uses the cache-and-update approach.  In the first heat of size sixty for 

differential virtualization, the direct modification approach was utilized.  Unfortunately, it was 

quickly apparent that the tested file server would not support many simultaneously operating 

linked clone virtual machines.  This section analyzes the requirements for an environment where 

direct modification is the primary approach when manipulating linked clones from a file server.  

The purpose of the direct modification experiments is to determine requirements for executing 

linked clones from network storage services.  Clearly, after discovering that the file server in 

used in the restoration experiment could not support sixty direct modifications, this behavior 

requires further research. 

In the experiments outlined in section 3.3, network utilization never reached its theoretical upper 

limit.  Even in the XP restoration experiment, when a maximum of 58,190,595 bytes per second 

transferred through the network adapter, the adapter only reached roughly 11% utilization of its 

4Gbit bandwidth.  It is assumed that the storage solution is a limiting hardware piece of the IO 

path.  Since it is assumed that the storage solution is the problematic component in the IO path, 

the data gathering and analysis is limited to primarily statistics of the file server disk.  Further, 

the model operating systems are limited to just Windows Sever 2003. 

In this experiment, hardware performance statistics are gathered using Windows Performance 

Monitor while one or many virtual machines are created, opened, or closed using the direct 

modification approach.  First, the restoration time experiment is attempted using direct 

modification with sixty models executing from Vista workstations and performance statistics are 

gathered.  Then, in a separate test, a linked clone is created in a home folder and performance 
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statistics are gathered.  Then, in another test, the linked clone is shutdown and performance 

statistics are gathered.  Finally, in the last test, the linked clone is started for a second time, 

simulating a restoration, and the performance statistics are gathered.  Thus, as a result, there are 

four Performance Monitor data sets.  One set from which analysis will show how many attempts 

to utilize the direct modification approach affect the file server’s resources.  While, from the 

other three sets, analysis will show how specific actions on a single direct modification of a 

linked clone affect the file server’s resources.  Finally, a performance correlation is attempted 

between a single direct modification and many direct modifications. 

3.5 Workstation Capabilities 

Until now, experiments have focused on differential system modeling using a single model per 

workstation.  However, virtualization plays a major role in this research because it facilitates the 

operation of multiple models per workstation.  The purpose of this experiment is to determine the 

capabilities of workstations regarding the execution of virtual machines. 

Firstly, it is assumed that users can intelligently manage resources allocated to each virtual 

machine.  In this modeling environment, the user has full control of their virtual machines; 

therefore, the user must set reasonable resource limits for their virtual machines.  The user must 

understand that the workstation has a finite amount of disposable resources and that the 

workstation operating system requires a portion of those resources.  It is not assumed that there 

exist precise resource limits but rather that the user can gauge usability within a model on a per-

model basis.  For example, if a user runs a Windows Server 2003 virtual machine with 92MB of 

memory and they are unable to run more than a few programs inside the virtual machine, the user 

should gather that the virtual machine might benefit from an increase in virtual memory. 

In this experiment, test is restricted to three model operating systems: Windows XP Professional, 

Windows 2003, and CentOS 5.  The same sample laboratory from previous experiments is 

utilized.  Virtual machine memory allocation remains at the default allocation size as set by 

VMware Workstation virtual machine for a specific operating system type is created.  Further, 

the default VMware Workstation memory preferences are used. 
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This experiment is straightforward; using XP and Vista, multiple virtual machines are launched 

on one workstation and ensure that each virtual machine is responsive.  Table 1 below details the 

amount of virtual memory allocated to each virtual machine for this experiment. 

Virtual Machine Memory Allocation 

Windows Server 2003 384MB 

Windows XP Professional 512MB 

CentOS 5.1 Server 384MB 
Table 1 – Memory allocation for virtual machines 
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4 Results and Analyses  

The logical services required to support a multi-user, shared, workstation-based modeling 

environment greatly enhance the network from a management and usability standpoint.  

Administrators can easily update model templates and can restrict access on a user or role-based 

level.  Users are able to move between workstations without worrying about hardware 

dependency.  It is crucial for an administrator to understand the purpose and configuration 

intricacies each component and process.  When compared to an environment that supports 

modeling via traditional full-system based imaging, this environment has the same essential 

services.  The addition of Windows Deployment Services in the researched environment is a 

complex process to learn.  However, it is no different from learning the complex traditional 

imaging process.  In the researched environment, differential modeling reduces the amount of 

user-specific data; thus, the overall storage requirements are decreased.  In both the traditional 

approach and the researched approach, a significant amount of managerial tasks exist including 

maintain workstation images, maintaining models, and maintaining the network services.  In the 

researched approach, models are built once; whereas, in the traditional approach, the models are 

hardware-specific and must be recreated when hardware changes.  For those reasons, 

management in the researched environment requires less attention than management in the 

traditional environment.  The remainder of this chapter presents results and analysis for the three 

experiments described in chapter 3. 

4.1 Optimizing Restoration Time 

The imaging restoration approach costs more than two hours longer than the differential 

virtualization approach with a heat size of sixty.  Figure 17 shows the average time, in seconds, 

that it took to restore one, thirty, and sixty modeling environments.   
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Figure 17 – Simultaneous restoration of models 

While the experiment seeks a specific number of result files, this goal was not met during each 

heat.  For example, in the Vista based restoration approach, less than all of the linked clones 

properly executed their startup script.  The logon script used in the Vista test was not as effective 

as the script used in the XP test.  The script used in the XP test, diffVirtResult.ps1 in appendix 

7.2 on page 48, passes the workstation name as a parameter to the vmrun.exe 

runprograminguest command; whereas the script used in the Vista test utilized 

renamefileinguest and then runprograminguest.  The vmrun.exe renamefileinguest 

command did not consistently function.  Therefore, the Vista test yields a less accurate 

representation of restoration time than the XP test and the remainder of analysis will focus on 

describing the differences between the imaging and XP approaches.  Even though the actual 
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number of result files does not equal the number of expected files; the expected number of linked 

clones successfully restored and started.  Table 2 details the actual number of result files 

generated for each heat.  The Vista based differential virtualization test has significantly lower 

actual reports in the thirty- and sixty-sized heats whereas the imaging tests have slightly lower 

actual reports.   

Expected  30 60 

Actual Imaging 29 57 

Actual DiffVirt-XP 30 60 

Actual DiffVirt-Vista 20 31 
Table 2 – Expected versus actual reports from restoration experiments 

Statistics were gathered regarding the server hardware performance using the Windows 

Performance Monitor during the restoration tests for a ten-minute period.  In Table 3, the 

relevant statistics gathered during the XP restoration test with sixty modeled systems are shown.  

In Table 4, the statistics gathered during the imaging restoration test with sixty modeled systems 

are shown. 

Item (per sec) MAX AVG TOTAL % SUM 

Disk Reads                  866                   560                 110,336  99.96 
               110,385  

Disk Writes                       4                        0                            49  0.04 

Disk Read Bytes    55,836,846     30,528,474     6,014,412,431  99.99 
   6,014,756,007  

Disk Write Bytes            28,673               1,744                 343,576  0.01 

Disk Queue Length                    39           20.9949        

Network Sent Bytes    58,190,595     25,888,362     2,200,510,747  98.87 
   2,225,584,540     

Network Received Bytes          900,447           288,205           25,073,794  1.13 
Table 3 – Performance statistics during the XP restoration with sixty models 

Item (per sec) MAX AVG TOTAL % SUM 

Disk Reads              1,000                   721                   431,661  100.0 
                 431,661   

Disk Writes                     -                        -                                 -    0.00 

Disk Read Bytes    32,450,628     23,350,984     13,987,239,500  100.0 
   13,987,239,500     

Disk Write Bytes                     -                        -                                 -    0.00 

Disk Queue Length                    18           15.2733  -  -  -  

Network Sent Bytes    33,759,377     25,898,157       3,599,843,808  91.05 
     3,953,833,288  

Network Received Bytes      3,275,002       2,510,564           353,989,479  8.95 
Table 4 – Performance statistics during the imaging restoration with sixty models 

Table 4 represents the data from a ten-minute period during active download of the system image 

from the file server to the workstation disk, whereas Table 3 represents the data from a ten-
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minute period containing the entire test.  Recall that the XP restoration test with sixty models 

took less than ten minutes in its entirety.  Therefore, just the relevant data for the XP restoration 

test from the period where the file server had disk activity, 0:57 – 4:13, is of interest.  The 

following two figures, Figure 18 and Figure 19, show, in line charts, the disk statistics for file 

server during the XP restoration and imaging restoration experiments, respectively.   

 

Figure 18 – Disk throughput during XP restoration with sixty models 

 

Figure 19 – Disk throughput during imaging restoration with sixty models 

It is easy to categorize three stages of the XP restoration experiment when the throughput is 

represented in this fashion.  The first minute, the workstations are powering on.  For the four 

minutes where disk reads are apparent, the workstations copy linked clones to their local disk.  

Finally, the last half of the chart shows no activity – there is no interaction with the file server 

once the workstation caches its linked clone.  The charted imaging throughput statistics shows a 

consistent amount of disk activity on the file server during the entire ten-minute gathering 

period.  Further, one can also see that the disk does not deliver as high of a throughput during the 

imaging restoration as it does in the XP restoration. 

Since linked clones are, by definition, much smaller than full system images, the amount of 

unique, yet similar, data transferred during the imaging restoration experiment considerably 

larger.  The following two figures, Figure 20 and Figure 21, show the sizes of eighty linked 

clones and eighty Ghost images, respectively.  Note that in this instance, each linked clone is 
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approximately 0.091GB (93MB) versus the 3GB of a Ghost image.  Recall that these models are 

only slightly modified from the model template – modifications consist of installing scripts to 

automate the test.  The differential nature of linked clones is the contributor to the stark size 

difference in these models.

 

Figure 20 – Size of eighty distinct linked clones 

 

Figure 21 – Size of eighty distinct Ghost image

Therefore, by using cache-and-update differential virtualization, less time is required for the 

model restoration phase.  Further, given an environment comparable to the sampled 

environment, a cache-and-update restoration and archival approach consistently yields high 

throughput as the number of models increases.  In restoration, when caching is occurring, the 

disk throughput is characterized by nearly all read operations.   

4.2 Direct Modification Characterization 

Firstly, the direct modification approach to restoration in this experiment uses the same 

experimental design from section 3.3.  In this instance, however, only eighteen models reported 

in the ten minutes, with an average restoration time of approximately 371 seconds (this data is in 

the Restoration Result Database in appendix 7.1 on page 44 as diffvirt-vista,70-17).  After ten 

minutes, the usability of the ―operational‖ models was very low – one could not even click a 

button inside the model because the virtual mouse would not respond.  Since the high-level 

requirement of usability did not exist, perhaps low-level performance measurements reveal a 

cause for low usability.  The performance data gathered for a ten-minute period during a Vista 

restoration test with sixty modeled systems using the direct modification approach are 

represented in Table 5.   
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Item (per sec) MAX AVG TOTAL % SUM 

Disk Reads                  197                   75               45,151  43.97 
               102,678 

Disk Writes                  139                   96               57,527  56.03 

Disk Read Bytes      3,559,645     1,043,720     625,188,450  49.86 
   1,253,883,296 

Disk Write Bytes      2,481,341     1,049,574     628,694,846  50.14 

Disk Queue Length                    18        10.2300        

Network Sent Bytes      3,066,858     1,552,146     215,748,251  66.48 
       324,536,118  

Network Received Bytes      1,351,262        771,545     108,787,866  33.52 
Table 5 – Performance statistics during the direct modification restoration with sixty models 

The sum of disk throughput, at approximately 1.2 billion bytes, for the ten-minute period 

described in Table 5 is much lower than the sum of the disk throughput, at approximately 6 

billion bytes, in the XP cached restoration approach (see Table 3, page 33).  But, why?  One 

possibility is that the file server cannot handle reading and writing operations in this capacity 

since the direct modification approach, in this capacity, has a read-to-write ratio of nearly one, 

whereas in the XP cached restoration approach it was nearly 100 (see Table 3, page 33).  

Another reason is that maybe the file server hardware cannot handle writing in this capacity.  

Figure 22, below, helps us to compare the read versus write operation throughput during the ten-

minute direct modification test with sixty models by showing the percentage of disk reads or 

writes per second.  The bottom area (blue) represents the read bytes per second while the top area 

(red) represents the write bytes per second.  One can loosely see that more the linked clones read 

more bytes in the beginning of the ten-minute period whereas, in the end, they wrote more bytes.   

 

Figure 22 – Disk throughput during direct modification restoration with sixty models 

Thus, one might gather that while read throughput exceeds the write throughput, linked clones 

more easily operate directly from the file server.  Yet, when the write throughput exceeds the 

read throughput, the total disk throughput decreases causing linked clone usability and operation 

to diminish.  However, it is likely that this analysis is sample-specific.  One cannot easily 

extrapolate this characteristic to other storage systems without similar testing utilizing the other 

hardware. 
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In an effort to understand requirements that a file server needs to meet in order to enable direct 

modifications of linked clones located on the file server, the following three sections detail the 

disk throughput from the file server during three distinct linked clone operations. 

A linked clone begins as a few files whose combined size is less than one megabyte, because, 

initially, a linked clone is just a set of pointers to the template virtual machine.  The following 

graphs, Figure 23 and Figure 24, show the disk operations at the file server when starting a 

linked clone for the first time from an XP and Vista workstation, respectively. 

 

Figure 23 – Disk operations during first launch of model using XP direct modification 
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Figure 24 – Disk operations during first launch of model using Vista direct modification 

The table below, Table 6, shows the read-to-write operations ratio for an initial launch of a 

linked clone directly from a file server using both XP and Vista as workstation operating 

systems. 

Workstation OS Reads Writes Read % Write % 

XP 28 4185 0.7 99.3 

Vista 31 1192 2.6 97.4 
Table 6 – Disk operations from server during initial launch of one model 

Given these two data representations, one can understand that the initial execution of a linked 

clone from a networked file server primarily consists of write operations. 

For this next experiment, a Windows Server 2003 linked clone was prepared by promoting it to a 

domain controller in a new domain.  The modified Windows Server linked clone was then 

restored using the direct modification approach.  The following graphs, Figure 25 and Figure 26, 

show the file server disk throughput when starting the modified linked clone from XP and Vista 

workstations, respectively. 
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Figure 25 – Disk operations during launch of modified model using XP direct modification 

 

Figure 26 – Disk operations during launch of modified model using Vista direct modification 

In both graphs, the linked clone starts at approximately twenty seconds (near the first spike).  

The top area (red) represents writes per second while the bottom area (blue) represents reads per 

second.  Both graphs appear to have similar trends of throughput with respect to time.  Both 

graphs appear to have more reads than writes early on, however this behavior seems to switch 

towards the end of the launch.  The table below, Table 7, illustrates the disk operations for the 

launch of the modified linked clone, a period that was approximately 140 seconds in both cases. 

Workstation OS Reads Writes Read % Write % 

XP 3,940   3,804 50.88 49.12 

Vista 7,699   4,598 62.61 37.39 
Table 7 – Disk operations from server during launch of one modified model 

Given these two data representations, one can understand that the launch of a previously 

modified linked clone from a networked file server consists heavily of both read and write 

operations.   

In the final direct modification experiment, statistics were gathered while linked clone was being 

shutdown.  The following representations, Figure 27, Figure 28, and Table 7, illustrate disk 

throughput on the file server during the shutdown of the linked clone.  In both figures, the 

bottom area (blue) represents read operations per second while the top area (red) represents write 

operations per second.  The figures show similar trends with low amount of operations for the 
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first half of shutdown followed by a larger amount of operations toward the end.  Further, the 

majority of the read operations occur in the second half of shutdown. 

 

Figure 27 – Disk operations during shutdown of modified model using XP direct modification 

 

Figure 28 – Disk operations during shutdown of modified model using Vista direct modification 

Workstation OS Reads Writes Read % Write % 

XP 3,037 6,411 32.14 67.86 

Vista 3,664 6,831 34.91 65.09 
Table 8 – Disk operations during shutdown of one modified model 

Given these representations, one can see that the shutdown of a linked clone on a networked file 

share consists of both read and write operations; however, more writes than reads comprise the 

shutdown process. 

It was determined that by using a direct modification restoration and archival approach with an 

increasing number of models, throughput is greatly reduced.  When one or many linked clones 

are restored directly, disk operations consist of a nearly equal amount of reads and writes.  Thus, 

an argument could be made that when both types of operations occur simultaneously, a piece of 

hardware in the IO path is not capable of delivering the required throughput.  In the instance of 

the researched environment, a single device type was not determined to be the root cause.  To 

determine how network bandwidth on the file server affects restoration time, further experiments 

could decrease the allotted bandwidth of the network adapter on the file server and observe re-

perform the restoration experiment.  In the experiments, the total file size of a linked clone was 

at most 100MB.  Therefore, the largest file in a linked clone file set is equal to or smaller than 
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100MB.  Whereas, the traditional Ghost image files were split into a 2GB file and a 1GB file.  

Based on the graphs in section 4.1, the average operation is 7MB larger while caching linked 

clones than imaging Ghost images.  Thus, overall, it appears that throughput, and therefore 

restoration and archival time, depends on operational characteristics (read versus write) and 

operation size.  The cache-and-update approach offers a far more efficient and faster approach to 

archiving and restoring user-specific models. 

4.3 Workstation Capabilities 

The sampled workstations had no issues executing three linked clones, with the specified virtual 

memory allocation.  All linked clones as well as the host operating system were responsive.  

Neither XP nor Vista appeared to render a more or less responsive model.  Based upon the 

capabilities of the sampled workstations, one could assume that other workstations with similar 

computing resources could execute the same number of workstations.  Finally, the operating 

capacity of the workstations was not sought but rather a capability was determined; the 

workstations could likely handle executing more linked clones. 

The workstations, with 3GB of memory and a 3.4 GHz processor, in the sampled environment 

were easily able to operate multiple (3) virtual machines simultaneously.  It is believed that 

workstations with similar hardware will have similar capabilities.  Since, in this environment, 

users control their virtual machines, the exercise of resource allocation between the workstation 

and the virtual machines it operates is a user responsibility.  Therefore, users must learn to gauge 

virtual machine resource allocation based on total available resources.  It appears that the 

recommended operating system specific virtual memory allocation by VMware in the 

Workstation product lends usable virtual environments.  Users must pay attention to the 

aggregate memory of all operating virtual machines to ensure that the expected resource use does 

not exceed that provided by the workstation.  Thus, in the researched environment, users get 

more operational benefits from individual workstations.  This translates to the possibility of 

decreased workstation cost or increased lab utilization – both of which benefit the organization. 
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5 Conclusions 

Since modeling is a pervasive scientific query and this research presents a usable and scalable 

modeling environment, this research is important.  The problem of providing a manageable, 

usable, and scalable modeling environment can be solved by using an implementation of the 

researched environment.  Organizations employing system engineers such as software 

developers, operating system programmers, system administrators, forensic analysts, malware 

researchers, students, and industry trainees could benefit from the new environment.  The new 

environment satisfies basic modeling requirements by using a virtualization platform where users 

can model entire systems with benefits like model snapshots and modularity.  The new 

environment is manageable, in the sample environment, because there are processes and methods 

to setup and maintain the infrastructure, deploy workstations, create templates and issue template 

refreshes.  Further, through automation capabilities, the cost for management decreases as 

automation will reduce human-error and the time required for each task.  It is clear that the new 

environment is a further scalable approach to system modeling than the traditional approaches 

based on the results from the restoration time experiment.  Since multiple linked clones can 

operate per workstation, resource utilization of individual workstations is increased, each user 

requires fewer workstations, and, therefore, the overall modeling environment efficiency is 

increased.  Since template-based virtual machines are used, the storage and network requirement 

per model is decreased which results in less time to preserve models and a higher rate of use of 

workstations.  If an organization operates many powerful workstations, this modeling approach 

will decrease the time required for user model preservation and decrease hardware dependency 

while providing large-scale system modeling. 
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6 Future Work 

In theory, if users were not required to cache their differential virtual machine prior to executing 

it, even less time is required for restoration and preservation.  In future experiments, attention 

should be focused to understand the requirements for simultaneous direct modification of many 

linked clones.  If the new environment were componentized into storage, network, and 

workstation items, one could posit that improving the capabilities of a component item might 

increase throughput during direct modification.  Since more workstations means more models 

are capable of running, the number of workstations can cause poor throughput.  However, 

increasing the capabilities of a workstation will not increase throughput.  Therefore, it is 

reasonable to assume that the problem lies with either the network or the storage solution.  

Therefore, one could use multiple storage solutions or networks in large-scale direct 

modification experiments and observing which configuration yields the most usable models.  

Further, individual hardware components could be configured differently so they are tailored to 

linked clone behaviors.  For example, since it is understood that the actual operation of a linked 

clone requires nearly equal read and write operations, a disk setup requiring less physical 

operations per logical operation might prove beneficial; that is to say, a RAID stripped and 

mirrored (RAID 0+1 or RAID 1+0) requires less physical disk operations per logical operation.   

In addition to simply understanding direct modification requirements, vendors like VMware are 

constantly releasing new products that enable virtualization and virtualization management.  For 

example, products like VMware ACE (VMware, Inc. 2008c) or Offline VDI (Lowe 2008) might 

enhance the ability to control virtual machines across many workstations.  VMware ACE enables 

administrators to expire virtual machines at a specified date as well as prevent the virtual 

machine from operating outside of their organization.  Recently introduced at VMworld 2008, 

the concept of Offline VDI enables users of VMware Virtual Desktop Infrastructure to ―to check 

out [virtual machines] and run them while disconnected from the [VMware Virtual 

Infrastructure] environment‖ (Lowe 2008).  
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7 Appendices 

7.1 Restoration Result Database 

 
traditional,60,maul101,8935.3245675 

traditional,60,maul102,8839.7470542 

traditional,60,maul103,8659.2169596 

traditional,60,maul104,8885.3405124 

traditional,60,maul11,8969.2774752 

traditional,60,maul12,8797.3410756 

traditional,60,maul13,8689.7636391 

traditional,60,maul14,8575.9674924 

traditional,60,maul21,8722.3571805 

traditional,60,maul22,8713.84161 

traditional,60,maul24,8676.7637223 

traditional,60,maul31,8891.9342202 

traditional,60,maul32,8926.6371231 

traditional,60,maul33,8876.9811909 

traditional,60,maul34,8938.1682993 

traditional,60,maul41,8881.4186625 

traditional,60,maul42,8898.4810533 

traditional,60,maul43,8946.6369951 

traditional,60,maul44,9031.8708246 

traditional,60,maul61,8971.3868367 

traditional,60,maul63,8867.5437513 

traditional,60,maul64,8819.4971838 

traditional,60,maul71,8737.8727062 

traditional,60,maul72,8883.7623975 

traditional,60,maul73,8632.2483822 

traditional,60,maul74,8553.7332597 

traditional,60,maul81,8537.7177372 

traditional,60,maul82,8480.5306032 

traditional,60,maul83,8528.4052968 

traditional,60,maul84,8903.8716438 

traditional,60,maul92,8896.2466926 

traditional,60,maul93,8700.6073197 

traditional,60,maul94,8505.8898159 

traditional,60,sidious102,8668.1387775 

traditional,60,sidious103,8610.6860202 

traditional,60,sidious13,8694.9511059 

traditional,60,sidious21,8667.8262795 

traditional,60,sidious22,8788.9661292 

traditional,60,sidious23,8764.5756603 

traditional,60,sidious33,8573.3893839 

traditional,60,sidious34,8719.1853258 

traditional,60,sidious41,8688.7323957 

traditional,60,sidious42,8892.3717174 

traditional,60,sidious43,8894.1685809 

traditional,60,sidious51,8892.8560893 

traditional,60,sidious52,8836.1689521 

traditional,60,sidious53,8940.7932825 

traditional,60,sidious61,8939.8557885 

traditional,60,sidious63,8923.8871407 

traditional,60,sidious64,8902.8716502 
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traditional,60,sidious72,8866.2625095 

traditional,60,sidious74,8733.997731 

traditional,60,sidious82,8754.8882223 

traditional,60,sidious83,8820.403428 

traditional,60,sidious84,8731.8883695 

traditional,60,sidious92,8677.9512147 

traditional,60,sidious93,8872.6218438 

traditional,30,maul11,4566.377025 

traditional,30,maul12,4450.8465144 

traditional,30,maul13,4412.2061367 

traditional,30,maul14,4202.8793514 

traditional,30,maul21,3669.8671377 

traditional,30,maul22,4331.1285306 

traditional,30,maul24,4005.1774917 

traditional,30,maul31,4150.1921886 

traditional,30,maul32,3965.8964931 

traditional,30,maul33,3953.1934494 

traditional,30,maul34,4060.3490136 

traditional,30,maul41,4423.6904382 

traditional,30,maul42,4453.1433747 

traditional,30,maul43,4157.4577671 

traditional,30,sidious103,4480.2525762 

traditional,30,sidious21,4164.4264725 

traditional,30,sidious22,3900.8656593 

traditional,30,sidious23,3883.6313946 

traditional,30,sidious31,4004.7243696 

traditional,30,sidious34,4278.722616 

traditional,30,sidious41,4438.5028434 

traditional,30,sidious42,3793.569471 

traditional,30,sidious43,4370.2220304 

traditional,30,sidious51,4445.4090492 

traditional,30,sidious52,4250.4259221 

traditional,30,sidious53,4389.2687835 

traditional,30,sidious84,4478.4244629 

traditional,30,sidious92,4510.8773802 

traditional,30,sidious93,4502.9243061 

traditional,1,maul11,1294.0385931 

diffvirt-vista,70-17,maul101,479.5376677 

diffvirt-vista,70-17,maul103,240.2610119 

diffvirt-vista,70-17,maul11,242.8859615 

diffvirt-vista,70-17,maul12,242.0891018 

diffvirt-vista,70-17,maul13,149.4033814 

diffvirt-vista,70-17,maul14,243.9796905 

diffvirt-vista,70-17,maul21,155.6532614 

diffvirt-vista,70-17,maul22,554.1612349 

diffvirt-vista,70-17,maul24,369.2272857 

diffvirt-vista,70-17,maul31,322.1656893 

diffvirt-vista,70-17,maul32,353.3994646 

diffvirt-vista,70-17,maul33,371.3834943 

diffvirt-vista,70-17,maul34,416.3045068 

diffvirt-vista,70-17,maul64,525.8024044 

diffvirt-vista,70-17,maul71,584.5512764 

diffvirt-vista,70-17,maul82,377.7739966 

diffvirt-vista,70-17,maul94,535.2865973 

diffvirt-vista,70-17,sidious101,522.8493361 

diffvirt-vista,60,maul101,273.5416229 

diffvirt-vista,60,maul103,272.9010102 
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diffvirt-vista,60,maul14,281.4945952 

diffvirt-vista,60,maul21,247.4171245 

diffvirt-vista,60,maul22,279.2602631 

diffvirt-vista,60,maul31,273.3228771 

diffvirt-vista,60,maul34,274.6978507 

diffvirt-vista,60,maul41,276.9165581 

diffvirt-vista,60,maul61,268.1979755 

diffvirt-vista,60,maul63,271.7291577 

diffvirt-vista,60,maul64,265.3542801 

diffvirt-vista,60,maul71,264.4011734 

diffvirt-vista,60,maul73,257.7606759 

diffvirt-vista,60,maul81,259.6043905 

diffvirt-vista,60,maul83,257.4169325 

diffvirt-vista,60,maul92,255.0888522 

diffvirt-vista,60,sidious104,343.587153 

diffvirt-vista,60,sidious11,331.2905141 

diffvirt-vista,60,sidious12,290.1975531 

diffvirt-vista,60,sidious21,257.963797 

diffvirt-vista,60,sidious22,256.6356975 

diffvirt-vista,60,sidious23,253.12014 

diffvirt-vista,60,sidious32,309.9159245 

diffvirt-vista,60,sidious33,311.7283897 

diffvirt-vista,60,sidious41,319.6032385 

diffvirt-vista,60,sidious61,323.6500358 

diffvirt-vista,60,sidious63,322.9312996 

diffvirt-vista,60,sidious64,323.118796 

diffvirt-vista,60,sidious74,292.5568828 

diffvirt-vista,60,sidious81,336.2591687 

diffvirt-vista,60,sidious84,325.7906197 

diffvirt-vista,30,maul101,231.5424293 

diffvirt-vista,30,maul13,187.3557777 

diffvirt-vista,30,maul14,220.6832628 

diffvirt-vista,30,maul21,186.2151746 

diffvirt-vista,30,maul22,214.8240003 

diffvirt-vista,30,maul24,234.6986187 

diffvirt-vista,30,maul34,229.1362255 

diffvirt-vista,30,maul41,222.0582364 

diffvirt-vista,30,maul43,224.1206968 

diffvirt-vista,30,maul64,226.0581596 

diffvirt-vista,30,maul71,226.7612711 

diffvirt-vista,30,maul72,226.9800169 

diffvirt-vista,30,maul73,226.2769054 

diffvirt-vista,30,maul81,232.9799017 

diffvirt-vista,30,maul82,193.6994059 

diffvirt-vista,30,maul84,239.0735347 

diffvirt-vista,30,maul94,197.6837044 

diffvirt-vista,30,sidious102,212.4021718 

diffvirt-vista,30,sidious103,248.1983595 

diffvirt-vista,30,sidious104,240.4328836 

diffvirt-vista,1,maul11,288.5100855 

diffvirt-xp,60,maul101,363.0479442 

diffvirt-xp,60,maul102,244.1140632 

diffvirt-xp,60,maul103,336.8767392 

diffvirt-xp,60,maul104,350.2670214 

diffvirt-xp,60,maul11,201.7253373 

diffvirt-xp,60,maul13,192.9288564 

diffvirt-xp,60,maul14,337.9860858 
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diffvirt-xp,60,maul21,256.3478901 

diffvirt-xp,60,maul22,293.8465908 

diffvirt-xp,60,maul31,359.0167974 

diffvirt-xp,60,maul32,187.2416112 

diffvirt-xp,60,maul34,349.1732994 

diffvirt-xp,60,maul41,262.4413671 

diffvirt-xp,60,maul42,241.7704182 

diffvirt-xp,60,maul43,318.3615882 

diffvirt-xp,60,maul61,267.4255188 

diffvirt-xp,60,maul62,169.5392793 

diffvirt-xp,60,maul63,351.1107498 

diffvirt-xp,60,maul64,316.299141 

diffvirt-xp,60,maul71,338.0485842 

diffvirt-xp,60,maul72,343.4234466 

diffvirt-xp,60,maul73,358.0324476 

diffvirt-xp,60,maul74,342.0484818 

diffvirt-xp,60,maul81,340.6110186 

diffvirt-xp,60,maul82,284.6437014 

diffvirt-xp,60,maul83,231.0521484 

diffvirt-xp,60,maul84,356.9855994 

diffvirt-xp,60,maul92,318.7365786 

diffvirt-xp,60,maul93,359.3136648 

diffvirt-xp,60,maul94,352.4857146 

diffvirt-xp,60,sidious102,355.1418966 

diffvirt-xp,60,sidious103,365.751 

diffvirt-xp,60,sidious104,328.9863162 

diffvirt-xp,60,sidious11,357.5637096 

diffvirt-xp,60,sidious12,354.9856506 

diffvirt-xp,60,sidious13,352.079475 

diffvirt-xp,60,sidious14,350.517015 

diffvirt-xp,60,sidious21,316.2522672 

diffvirt-xp,60,sidious22,331.767495 

diffvirt-xp,60,sidious23,335.673645 

diffvirt-xp,60,sidious31,270.2378928 

diffvirt-xp,60,sidious32,365.6885016 

diffvirt-xp,60,sidious33,356.7356058 

diffvirt-xp,60,sidious34,352.2044718 

diffvirt-xp,60,sidious41,345.1421526 

diffvirt-xp,60,sidious43,339.8297886 

diffvirt-xp,60,sidious51,346.5171174 

diffvirt-xp,60,sidious52,343.329699 

diffvirt-xp,60,sidious53,345.6421398 

diffvirt-xp,60,sidious54,332.9549646 

diffvirt-xp,60,sidious61,356.4856122 

diffvirt-xp,60,sidious63,365.8603722 

diffvirt-xp,60,sidious64,345.3921462 

diffvirt-xp,60,sidious72,329.267559 

diffvirt-xp,60,sidious73,353.25132 

diffvirt-xp,60,sidious74,343.564068 

diffvirt-xp,60,sidious81,348.8139336 

diffvirt-xp,60,sidious82,343.7671878 

diffvirt-xp,60,sidious83,328.3144584 

diffvirt-xp,60,sidious84,351.766983 

diffvirt-xp,30,maul101,196.3043926 

diffvirt-xp,30,maul102,175.7581751 

diffvirt-xp,30,maul103,195.1325551 

diffvirt-xp,30,maul104,195.3669226 



48 

 

diffvirt-xp,30,maul71,205.9603336 

diffvirt-xp,30,maul72,207.2102936 

diffvirt-xp,30,maul73,200.6792526 

diffvirt-xp,30,maul74,215.8975156 

diffvirt-xp,30,maul81,186.7421986 

diffvirt-xp,30,maul82,191.6014181 

diffvirt-xp,30,maul83,207.4915346 

diffvirt-xp,30,maul84,216.3193771 

diffvirt-xp,30,maul92,208.4602536 

diffvirt-xp,30,maul93,208.9758621 

diffvirt-xp,30,maul94,203.4604136 

diffvirt-xp,30,sidious11,210.8508021 

diffvirt-xp,30,sidious12,213.3819711 

diffvirt-xp,30,sidious13,220.3348736 

diffvirt-xp,30,sidious14,217.5380881 

diffvirt-xp,30,sidious21,221.8504501 

diffvirt-xp,30,sidious22,213.5538406 

diffvirt-xp,30,sidious23,229.3502101 

diffvirt-xp,30,sidious31,201.3979796 

diffvirt-xp,30,sidious32,223.2566551 

diffvirt-xp,30,sidious33,213.7725836 

diffvirt-xp,30,sidious34,197.9605896 

diffvirt-xp,30,sidious81,229.7251981 

diffvirt-xp,30,sidious82,225.8034486 

diffvirt-xp,30,sidious83,206.6321871 

diffvirt-xp,30,sidious84,226.5690491 

diffvirt-xp,1,maul102,190.1838484 

 

 

7.2 diffVirtResult.ps1 

 
# diffVirtResult.ps1 

# written in PowerShell 1.0 

# script maps a network share based on its IP address and writes a file to 

the share 

# 

# 

#this script is  

#-set to execute on startup 

#-used for automating a differential virtualization restoration experiment 

#-written in PowerShell 

#-written by Jason Koppe 

# 

 

#identify imaging subnets 

# 10.200.251.0/24 is maul 

# 10.200.250.0/24 is sidious 

$names = @{"251" = "maul"; "250" = "sidious"} 

 

#select and split the output of ipconfig to get the imaging NIC ip address 

$ip=(ipconfig | select-string "10.200.25" | select-string 

"IP").tostring().split(":")[1] 
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#third octet of the IP address is side-specific 

$subnet=$ip.split(".")[2] 

 

#fourth octet of the IP address is machine-specific 

$node=$ip.split(".")[3] 

 

#quick lookup to the hash 

$name=$names[$subnet].tostring() 

$name+=$node 

 

#copy the linked clone 

del c:\users\$name\desktop\* -recurse -force  

robocopy z:\restoration c:\users\$name\desktop\ 

 

#start the linked clone and start a script in the linked 

#clone based on the host name 

& 'C:\Program Files\VMware\VMware Workstation\vmrun.exe' start 

"c:\users\$name\desktop\Clone of Restoration.vmx"  

& 'C:\Program Files\VMware\VMware Workstation\vmrun.exe' -gu administrator -

gp netsys runprograminguest "c:\users\$name\desktop\Clone of Restoration.vmx" 

c:\windows\system32\windowspowershell\v1.0\powershell.exe "c:\koppe.ps1 

$name" 

 

7.3 batchanalyze.ps1 

 

#batchanalyze.ps1 

#written in Windows PowerShell 1.0 

# 

#Given an input file of format: 

# testname,testsize,workstationname,restorationtime 

#Output analysis statistics for all test types at each heat size 

 

#data analysis types 

$types = "avg","min","max" 

 

#set default analysis type to average 

$type = $types[0] 

 

#set default database file name 

$db = "s.csv" 

 

#if there are command line arguments, use them to set db and type 

if ($args.count -ge 1 ) {  

 $db = $args[0] 

} 

if ($args.count -eq 2 ) {  

 $type = $args[1] 

} 

 

 

#test names 

$tests = "traditional","diffvirt-xp","diffvirt-vista" 

 

#test sizes 
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$sizes = 1,30,60 

 

 

#for each test type 

for($t=0;$t -lt $tests.length;$t++){ 

 $testline = "" 

  

 #for each test size 

 for($s=0;$s -lt $sizes.length;$s++) { 

 

   

  $val = 0 

  $min = 999999999999999999999 

  $max = 0 

  $sum = 0 

  $count = 0 

  $name=$tests[$t] 

  $size=$sizes[$s] 

   

  #for each line in the database, split on comma and update sum, 

min, max, count 

  gc $db | foreach { 

   $line = $_.split(",") 

   if (($line[0] -eq $name) -and ($line[1] -eq $size)) { 

    $sum+=$line[3] 

    if ($line[3] -gt $max) { $max = $line[3] } 

    if ($line[3] -lt $min) { $min = $line[3] } 

    $count++ 

   } 

  } 

  #calculate average 

  if ($count -eq 0) { $avg = 0 } else { $avg = $sum/$count } 

   

  #expectations of count met? 

  if ($count -ne $size) { "ERROR: Number of records ($count) 

doesn't match inputted test size ($size)" } 

  switch ($type) { 

   'avg' { $testline+=[math]::round($avg,3) } 

   'min' { $testline+=[math]::round($min,3) } 

   'max' { $testline+=[math]::round($max,3)  } 

  } 

  if ($s -ne ($sizes.length-1)) { $testline+="," } 

   

 } 

  

 #write output 

 Write-Host $testline 

} 

 

7.4 starttest.ps1 

 

#restoration test start script 

#Written in PowerShell 1.0 

#the purpose of this script is to record the time on the server at the  
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#start of a test and generate a record for each workstation at the end of a  

#test 

 

#get testname and size 

$name = Read-Host "Enter test name and size (Ex: Traditional,30)" 

 

#Get the date 

$date = get-date 

 

#Pause until the end of the test 

Read-Host "Begin the test now & hit enter when the test is done..." 

 

#for each folder in the directory, find the result file 

#for each result file, calculate the difference between its creation time  

#and the start of the test and record this in the database. 

#finally rename the result file for longevity 

$basefolder = get-item "e:\students\20074\599-01\" 

Get-ChildItem $basefolder  | foreach-object {  

 $path = "$basefolder\$_\result" 

 if ((Test-Path -Path $path)  -eq $True) { 

  $result = get-childitem $path 

  $diff = $result.creationTime.subtract($date).totalseconds 

  $record = "$name,$_,$diff" 

  $record >> restoration.csv 

  Rename-Item -Path $path -newname $record 

 } 

} 
 

7.5 massImage.ps1 

 

# massImage.ps1 

# written in Powershell CTP 2.0 

# The purpose of this script is to automate configuration of a multicast 

# transmission and unattended installation of a specific install image on a 

# specific WDS server.  A detailed process overview is given below. 

######## 

#Prerequisites 

# 

#-Windows 2008 

#-PowerShell CTP 2.0 

#-WDSUTIL 

#-Administrative shell 

#-Domain credentials 

 

######## 

#Process 

# 

#-select wds server 

#-select image 

#-generate client unattend 

#-unique client unattend name 

#-store client unattend 

#-store boot program 

#-set client unattend 
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#-enable n12 as boot program 

#-check pre-existing MC sessions 

#-create multicast session 

#-pause until trigger from input 

#-check # of clients connected 

#-start multicast 

#-revert boot program 

#-revert client unattend 

 

######## 

#Author 

#-Jason R Koppe 

 

########## 

#Global Variables 

$wds 

$images 

$xmls 

$running = "RUNNING" 

$stopped = "STOPPED" 

$server  

$wdsoutput 

 

########## 

#Functions 

Function Prompt-YesNo ($Caption, $Message,$choices) {  

  

$host.ui.PromptForChoice($caption,$Message,[System.Management.Automation.Host

.ChoiceDescription[]]$choices,0)  

} 

 

Function wdsState($s) { 

 $state = (sc.exe \\$s query wdsserver | Select-String "STATE") 

 if ($state) { $state = $state.tostring().split(":")[1].trim().split(" 

")[2] } 

 if ($state -eq $running) { 

  return $running 

 } 

 return $stopped 

} 

 

######### 

#Check for prerequisites 

Write-Host "Prerequisites" 

Write-Host "-------------" 

Write-Host "Checking Windows version...`t" -NoNewline 

 

if ((get-wmiobject -class "Win32_OperatingSystem" -namespace "root\CIMV2"  -

computername .).name -match "2008") { 

 Write-Host "ok" -ForegroundColor "green" 

} else { 

 Write-Host "failed" -ForegroundColor "red" 

 Write-Host "Please run this script on Windows Server 2008" -

ForegroundColor "red" 

 exit 

} 
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Write-Host "Checking PowerShell version...`t" -NoNewline 

 

if ((get-pssnapin -name Microsoft.Powershell.core).psversion.major -ge 2) { 

 Write-Host "ok" -ForegroundColor "green" 

} else { 

 Write-Host "failed" -ForegroundColor "red" 

 Write-Host "Please install PowerShell 2.0 (Select-string -context is 

required)" -ForegroundColor "red" 

 exit 

} 

 

Write-Host "Checking privileges...`t`t" -NoNewline 

servermanagercmd > $null 2>$null 

if ($lastexitcode -eq 4) {  

 Write-Host "ok" -ForegroundColor "green" 

} else { 

 Write-Host "failed" -ForegroundColor "red" 

 Write-Host "Please run this from an Administrative console" -

ForegroundColor "red" 

 exit 

} 

 

Write-Host "Checking WDS tools...`t`t" -NoNewline 

 

if ((Test-Path C:\Windows\System32\wdsutil.exe) -eq $true) { 

 Write-Host "ok" -ForegroundColor "green" 

} else { 

 Write-Host "failed" -ForegroundColor "red" 

  

 $n = ([System.Management.Automation.Host.ChoiceDescription]"&No")  

 $n.helpmessage = "No, don't install WDS tools"  

  

 $Y = ([System.Management.Automation.Host.ChoiceDescription]"&Yes")  

 $y.helpmessage = "Yes, install netsh WDS tools"  

 $choices = ($Y,$N) 

  

  

 $ans = $host.ui.PromptForChoice("Install WDS tools","Would you like to 

install WDS utilities now?", 

  

 [System.Management.Automation.Host.ChoiceDescription[]]$choices,0) 

 if ($ans -eq 0) { 

  servermanagercmd -install RSAT-WDS 

 }else { exit } 

} 

 

############ 

#Main script 

Write-Host "`n`nMulticast Imaging" 

Write-Host "-----------------" 

 

if ($args.count -eq 1) {  

 Write-Host "Validating input server...`t" -NoNewline 

 $s = $args[0] 

 wdsutil /get-allimages /server:$s /show:Install /detailed > $null 

 if ($lastexitcode -eq 0) { 

  $server = $s 
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  Write-Host "ok" -ForegroundColor "green" 

 } 

 else { 

  Write-Host "failed"  -ForegroundColor "red" 

 } 

} 

if (-not $server) { 

 Write-Host "Finding WDS servers...`t`t" -NoNewline 

 $wdsoutput = wdsutil /get-allservers /show:config 

  

 $wdsoutput | select-string "Attempting to contact server" | foreach { 

  $wds += ,($_.tostring().split(" ")[4]) 

 } 

 if ($wds.count -gt 0) { 

  Write-Host "done" -ForegroundColor "green" 

 } else { 

  Write-Host "done" -ForegroundColor "red" 

  Write-Host "No WDS servers found" -ForegroundColor "red" 

  if (${env:userdomain} -eq ${env:computername}) { 

   Write-Host "Run this console from a domain admin account" -

ForegroundColor "red" 

  } 

  Write-Host "Try running the script with the servername as the 

parameter" -ForegroundColor "red" 

  Write-Host "`tEx: C:\admin\scripts\massImage.ps1 srv1" -

ForegroundColor "red" 

  exit 

 } 

  

 

  

 Write-Host "Checking WDS state...`t`t" -NoNewline 

 #add .state to string objects in the wds collection 

 for ($i = 0; $i -lt $wds.count; $i++) { 

  $state = wdsState $wds[$i] 

  $wds[$i] = $wds[$i] | add-member noteproperty state $state -

passthru 

 } 

 Write-Host "done`n" -ForegroundColor "green" 

  

 #get choice server 

 $lc = 0 

 while($server.state -ne $running) { 

   

  #print menu on first iteration 

  if ($lc -eq 0) { 

   write-host "[#] Server" 

   write-host "----------" 

   for ($i = 0; $i -lt $wds.count; $i++) { 

    $w = $wds[$i].tostring().split(".")[0] 

    $s = $wds[$i].state 

     

    if ($s -eq $running) { write-host [$i] $w -

ForegroundColor "green" } 

    else { write-host [$i] $w } 

   } 

  } 
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  #print warning after first iteration 

  if ($lc -gt 0) { Write-Host "`nNOTE: WDS must be running on the 

server.`n" } 

   

  #get input 

  $in = read-host "Select a WDS server" 

   

  #validate input 

  if (($in -cmatch "^\d+$") -eq $true) { 

   $in = [int]$in 

   if (($in -ge 0) -and ($in -lt $wds.count)) { 

    $server = $wds[$in] 

   } 

  } 

  

  $lc++ 

 }       

} 

 

 

#find images on $server 

Write-Host "Finding images...`t`t" -NoNewline 

$wdsoutput = wdsutil /get-allimages /server:$server /show:Install /detailed 

 

$wdsoutput | select-string "Image name" -context 0,4| foreach-object { 

  

 $name = $_.line.tostring().split(":")[1].trim() 

 $group = ($_.context.postcontext | select-string 

"group").tostring().split(":")[1].trim() 

  

 $image = $name 

 $image = $image | Add-Member noteproperty group $group -PassThru 

 $image = $image | Add-Member noteproperty server $server -PassThru 

 $images += ,$image 

} 

Write-Host "ok`n" -ForegroundColor "green" 

 

#get choice image 

$simage 

$simagegroup 

$lc = 0 

while(-not $simage) { 

  

 #print menu on first iteration 

 if ($lc -eq 0) { 

  write-host "[#] Group | Name " 

  write-host "--------------------" 

  for ($i = 0; $i -lt $images.count; $i++) { 

   $n = $images[$i].tostring() 

   $g = $images[$i].group 

   write-host "[$i] $g | $n" 

  } 

 } 

  

 #print warning after first iteration 

 if ($lc -gt 0) { Write-Host "`nNOTE: Input a valid number" } 
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 #get input 

 $in = read-host "`nSelect an image" 

  

 #validate input 

 if (($in -cmatch "^\d+$") -eq $true) { 

  $in = [int]$in 

  if (($in -ge 0) -and ($in -lt $images.count)) { 

   $simage = $images[$in] 

   $simagegroup = $images[$in].group 

  } 

 } 

 

 $lc++ 

} 

Write-Host "Generating unattend name...`t" -NoNewline 

 

#find full path for WdsClientUnattend 

$reminst = (wdsutil /get-server /show:all /detailed | select-string "REMINST 

location").tostring().trim().split(" ")[2] 

 

#unique name for temporary unattend xml 

$xfile = "" + (new-object random).next() + ".xml" 

$fullname = "$reminst\WdsClientUnattend\$xfile" 

 

#verify unique name for temporary unattend xml 

while ((test-path $fullname) -eq $true) { 

 $xfile = "" + (new-object random).next() + ".xml" 

 $fullname = "$reminst\WdsClientUnattend\$xfile" 

} 

Write-Host "ok" -ForegroundColor "Green" 

Write-Host "Generating unattend file...`t" -NoNewline 

#generate temporary unattend xml 

set-content $fullname (get-content default.xml | foreach {  

 $ng = ">$simagegroup<" 

 $_ -replace ">IMAGEGROUP<", $ng } | foreach {  

  $_ -replace ">IMAGENAME<", ">$simage<"  

}) 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

 

#save boot program 

$orig_bootprogram = (wdsutil /get-server /show:all /detailed | select-string 

"default boot programs:" -context 0,1 | foreach-object {  

 ($_.context.postcontext | select-string 

"x86").tostring().trim().split(" ")[3] 

}) 

#save boot program 64  

$orig_bootprogram64 = (wdsutil /get-server /show:all /detailed | select-

string "default boot programs:" -context 0,2 | foreach-object {  

 ($_.context.postcontext | select-string 

"x64").tostring().trim().split(" ")[3] 

}) 

#save client unattend 

$orig_clientunattend = (wdsutil /get-server /show:all /detailed | select-

string "WDS unattend files:" -context 0,1 | foreach-object {  

 ($_.context.postcontext | select-string 
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"x86").tostring().trim().split(" ")[3] 

}) 

 

#set new boot program 

Write-Host "Setting boot program...`t`t" -NoNewline 

wdsutil /set-server /server:$server /bootprogram:boot\x86\pxeboot.n12 

/architecture:x86  > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

#set new boot program 

Write-Host "Setting boot program...`t`t" -NoNewline 

wdsutil /set-server /server:$server /bootprogram:boot\x64\pxeboot.n12 

/architecture:x64  > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

Write-Host "Setting unattend file...`t" -NoNewline 

#set new unattend file 

wdsutil /set-server /server:$server /wdsunattend 

/file:WdsClientUnattend\WdsClientUnattend\$xfile /architecture:x86  > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

Write-Host "Checking multicast session...`t" -NoNewline 

WDSUTIL /get-MulticastTransmission /Server:$server /Image:$simage 

/ImageType:Install /imagegroup:$simagegroup > $null 

if ($lastexitcode -eq -1056767648) { 

 Write-Host "ok" -ForegroundColor "green" 

 #create multicast session 

 Write-Host "Creating multicast session...`t" -NoNewline 

 WDSUTIL /New-MulticastTransmission /FriendlyName:"WDS SchedCast 

Transmission" /Server:$server /Image:$simage /ImageType:Install 

/imagegroup:$simagegroup /TransmissionType:ScheduledCast  > $null 

 if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } 

else { Write-Host "failed" -ForegroundColor "red" } 

}else { 

 Write-Host "already existed" 

 Write-Host "Deleting session...`t`t" -NoNewline 

 #delete multicast session 

 WDSUTIL /remove-MulticastTransmission /Server:$server /Image:$simage 

/ImageType:Install /imagegroup:$simagegroup /force  > $null 

 if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } 

else { Write-Host "failed" -ForegroundColor "red" } 

 Write-Host "Recreating session...`t`t" -NoNewline 

 #recreate multicast session 

 WDSUTIL /New-MulticastTransmission /FriendlyName:"WDS SchedCast 

Transmission" /Server:$server /Image:$simage /ImageType:Install 

/imagegroup:$simagegroup /TransmissionType:ScheduledCast  > $null 

 if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } 

else { Write-Host "failed" -ForegroundColor "red" } 

} 

 

#start multicast session 

Write-Host "Wait for all clients to join, then press ENTER" -ForegroundColor 

"red" 

Read-Host 

 

while ((wdsutil /get-multicasttransmission /Server:$server /Image:$simage 

/imagetype:install /imagegroup:$simagegroup /show:clients | select-string 



58 

 

"Clients Connected").line.split(":")[1].trim() -eq 0) { 

 Write-Host "No clients have joined the session" -ForegroundColor "red" 

 Write-Host "Wait for all clients to join, then press ENTER" -

ForegroundColor "red" 

 Read-Host 

} 

WDSUTIL /start-MulticastTransmission /Server:$server /Image:$simage 

/ImageType:Install /imagegroup:$simagegroup > $null 

 

Write-Host "The clients should now be imaging`n" -ForegroundColor "red" 

######### 

#Cleanup 

Write-Host "Performing cleanup" 

Write-Host "------------------" 

#tombstone multicast session (don't allow more to join & delete when all 

done) 

Write-Host "Mark session for deletion...`t" -NoNewline 

WDSUTIL /remove-MulticastTransmission /Server:$server /Image:$simage 

/ImageType:Install /imagegroup:$simagegroup > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

 

#reset boot program 

Write-Host "Reset boot program...`t`t" -NoNewline 

wdsutil /set-server /server:$server /bootprogram:$orig_bootprogram 

/architecture:x86 > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

 

#reset boot program 

Write-Host "Reset boot program...`t`t" -NoNewline 

wdsutil /set-server /server:$server /bootprogram:$orig_bootprogram64 

/architecture:x64 > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

 

#reset unattend file 

Write-Host "Reset unattend...`t`t" -NoNewline 

wdsutil /set-server /server:$server /wdsunattend /file:$orig_clientunattend 

/architecture:x86 > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

 

#remove temporary file 

Write-Host "Remove unattend file...`t`t" -NoNewline 

Del $fullname -Force > $null 

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else { 

Write-Host "failed" -ForegroundColor "red" } 

 

7.6 default.xml 

 
<?xml version="1.0" encoding="utf-8"?> 

<unattend xmlns="urn:schemas-microsoft-com:unattend"> 

    <settings pass="windowsPE"> 
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            <component name="Microsoft-Windows-Setup" 

publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS" 

processorArchitecture="x86"> 

            <DiskConfiguration> 

            <WillShowUI>OnError</WillShowUI> 

                <Disk> 

                    <CreatePartitions> 

                        <CreatePartition> 

                            <Order>2</Order> 

                            <Type>Primary</Type> 

                            <Extend>true</Extend> 

                        </CreatePartition> 

                        <CreatePartition> 

                            <Order>1</Order> 

                            <Type>Primary</Type> 

                            <Size>20000</Size> 

                        </CreatePartition> 

                    </CreatePartitions> 

                    <ModifyPartitions> 

                        <ModifyPartition> 

                            <Active>true</Active> 

                            <Format>NTFS</Format> 

                            <Label>Public</Label> 

                            <Letter>P</Letter> 

                            <Order>2</Order> 

                            <PartitionID>1</PartitionID> 

                        </ModifyPartition> 

                        <ModifyPartition> 

                            <Active>true</Active> 

                            <Extend>False</Extend> 

                            <Format>NTFS</Format> 

                            <Label>Local Disk</Label> 

                            <Letter>C</Letter> 

                            <Order>1</Order> 

                            <PartitionID>2</PartitionID> 

                        </ModifyPartition> 

                    </ModifyPartitions> 

                    <DiskID>0</DiskID> 

                    <WillWipeDisk>true</WillWipeDisk> 

                </Disk> 

            </DiskConfiguration> 

            <ImageInstall> 

                <OSImage> 

                    <InstallTo> 

                        <DiskID>0</DiskID> 

                        <PartitionID>2</PartitionID> 

                    </InstallTo> 

                    <WillShowUI>OnError</WillShowUI> 

                </OSImage> 

            </ImageInstall> 

            <UserData> 

                <ProductKey> 

                    <WillShowUI>OnError</WillShowUI> 

                </ProductKey> 

                <AcceptEula>true</AcceptEula> 

                <FullName>IT</FullName> 

                <Organization>RIT</Organization> 
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            </UserData> 

            <WindowsDeploymentServices> 

                <Login> 

                    <Credentials> 

                        <Domain>TESTDOMAIN</Domain> 

                        <Password>TESTPASSWORD</Password> 

                        <Username>TESTUSERNAME</Username> 

                    </Credentials> 

                </Login> 

                <ImageSelection> 

                    <InstallImage> 

                        <ImageGroup>IMAGEGROUP</ImageGroup> 

                        <ImageName>IMAGENAME</ImageName> 

                    </InstallImage> 

                    <InstallTo> 

                        <DiskID>0</DiskID> 

                        <PartitionID>2</PartitionID> 

                    </InstallTo> 

                </ImageSelection> 

            </WindowsDeploymentServices> 

        </component> 

        <component name="Microsoft-Windows-International-Core-WinPE" 

processorArchitecture="x86" publicKeyToken="31bf3856ad364e35" 

language="neutral" versionScope="nonSxS" 

xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

            <SetupUILanguage> 

                <UILanguage>en-US</UILanguage> 

            </SetupUILanguage> 

            <InputLocale>en-US</InputLocale> 

            <SystemLocale>en-US</SystemLocale> 

            <UILanguage>en-US</UILanguage> 

            <UserLocale>en-US</UserLocale> 

        </component> 

    </settings> 

    <cpi:offlineImage cpi:source="" xmlns:cpi="urn:schemas-microsoft-com:cpi" 

/> 

</unattend> 

 

 

7.7 useradd.pl 

 

#!/usr/bin/perl -w 

#Author: Jason Koppe 

#Started 11/27/05 

#Code Finished 3/12/06 

#Comments Finished 3/15/06 

#USAGE: perl <path to perl script> <path to ini file> 

#Example: perl d:\admin\useradd.pl d:\admin\input\useradd.ini 

 

#Items to add 

######## 

#AD Groups like 071-421-39 
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#Class choices like 421-39 

#Class path like \\jabba\students\20071\ 

#Automatic Date  

 

 

 

 

use Term::ReadKey; 

use Config::INI::Simple; 

 

#3/10/06 JK 

#Catches CTRL+C 

$SIG{INT} = sub { print "\nProgram terminated by CTRL+C!!!\n\n"; exit 5; }; 

 

#11/27/05 

#Sub taken from dhcp_config.pl written by Suraaj Gaur 

#3/10/06 JK Modified 

# To check for undefined and reask the question 

# otherwise return chomped input 

sub prompt { 

 my ($message) = @_; 

 print $message; 

 my $input = <STDIN>; 

 if (!(defined($input))) { print "\n"; prompt($message); } 

 chomp($input); 

 return $input; 

} 

 

#11/27/05 

#Sub taken from dhcp_config.pl written by Suraaj Gaur 

#Prompts for password, or other sensitive input.  Does not echo 

#out text typed in 

#3/10/06 JK Modified 

# Not defined, don't chomp 

sub passPrompt { 

 while (1 eq 1) { 

  Term::ReadKey::ReadMode('noecho'); 

  print "Enter password: "; 

  my $input = <STDIN>; 

  print "\n"; 

  print "Enter password again: "; 

  my $secinput = <STDIN>; 

  if (defined($input)) { chomp($input); } 

  if (defined($secinput)) { chomp($secinput); } 

  Term::ReadKey::ReadMode(0); 

  print "\n"; 

  if ($input eq $secinput) { 

   print "Passwords match\n"; 

   return $input; 

  } 

  else { 

   print "Passwords do not match, try again\n"; 

  } 

 } 

} 

 

#11/27/05 JK 
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#0 - User is enabled 

#1 - User is disabled 

sub userDisabled { 

 if ( "@_" eq "" ) { return 1; } 

 my ( $user ) = @_; 

 if ( `dsquery user -samid \"$user\" -disabled -o samid` =~ /^$/ ) { 

return 0; } 

 else { return 1; } 

} 

#11/28/05 JK 

#0 - User is not created 

#1 - User is created 

sub userCreated { 

 if ( "@_" eq "" ) { return 1; } 

 my ( $user ) = @_; 

 if ( `dsquery user -samid \"$user\" -o samid 2>&1` =~ /^$/ ) { return 

0; } 

 else { return 1; } 

} 

 

#3/10/06 JK 

#Trims leading and trailing whitespace 

sub trim { 

 my ($string) = @_; 

 $string =~ s/^\s+//; 

 $string =~ s/\s+$//; 

 return $string; 

} 

 

#2/11/06 JK 

#0 - Group invalid 

#1 - Group valid 

#The array @courses is populated earlier from the .ini settings file 

sub validCourse { 

 my ( $course, @courses ) = @_; 

 foreach(@courses) { 

  if ($course eq $_) { return 1; } 

 } 

 return 0; 

} 

 

#3/10/06 JK 

#0 - Group doesn't exist 

#1 - Group exists 

#Checks to see whether the group is created in active directory 

sub groupCreated { 

 if ( "@_" eq "" ) { return 0; } 

 my ( $group ) = @_; 

 if ( `dsquery group $group 2>&1` =~ /failed/ ) { return 0; } 

 else { return 1; } 

} 

 

#2/11/06 JK 

#updated 3/5/06 

#0 - Server doesn't exist 

#1 - Server exists 

#The @servers arrary is populated earlier from the .ini settings file 
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#The input can match any part of the server string from the ini file 

sub validServer { 

 my ( $server, @servers ) = @_; 

 $server = lc($server); 

 my ( $s, $i ) = 0; 

 foreach(@servers) { 

  if ($server eq $_) { return $_; } 

  if (substr($server,0,1) eq substr($_,0,1)) { return $_; } 

 } 

 return 0; 

} 

 

#2/11/06 JK 

#updated 3/5/06 

#0 - Day invalid 

#1 - Day valid 

#Weekdays for now 

sub validDay { 

 my ( $day ) = @_; 

 $day = lc($day); 

 if ( $day eq "m" || $day eq "t" || $day eq "w" || $day eq "r" || $day 

eq "f" ) { return 1; } 

 else { return 0; } 

} 

 

#3/5/06 JK 

#1 - Add was successful 

#0 - Add failed 

#Creates a group in active directory 

sub createGroup { 

 my ($group) = @_; 

 if ( `dsadd group $group` =~ /succeeded/ ) { return 1; } 

 else { return 0; } 

} 

 

#3/9/06 JK 

#Assuming the description of the user is the path where they save files, 

#This sub will print the location of a user as well as the directory 

#where they save files.  The description has been used in the past to store 

#the users path, this could be modified to use the homedirectory of the users 

#object.  The two values are returned in the array 

sub printLocDesc { 

 if ( "@_" eq "" ) { return; } 

 my ($user) = @_; 

 my ($dn) = `dsquery user -samid \"$user\"`; 

 my (@result) = split(/\n/,`dsget user $dn -desc`); 

 print "\tObject Location:  $dn"; 

 print "\tSave Directory:\t$result[1]\n"; 

 return ($dn,$result[1]); 

} 

 

# Add course to ini 

# JK 

sub addCourse { 

 if ( @_ ne 2 ) { 

  return -1; 

 } 
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} 

 

#JK 

#This sub reads settings from the ini file an also gathers user input.  The 

info 

#collected from the sub include the quarter, course, server and day.  If the 

ini 

#file is provided as the first input parameter, the script will use that 

path, otherwise 

#it defaults to \\netsys.labs\share\teams\Scripts\Input\useradd.ini because 

thats where most of our scripts will 

#be located. 

sub getSettings { 

 my ($server,$quarter,$qtrprompt,$course, $courses, $servers) = ""; 

 my ($inifile) = new Config::INI::Simple; 

 my ($hostname) = `hostname`; 

 if ($#ARGV+1 eq 1) { $inifile->read("$ARGV[0]"); } 

 else { $inifile-

>read("\\\\netsys.labs\\share\\teams\\scripts\\useradd.ini"); } 

 $quarter = "$inifile->{default}->{quarter}"; 

 if ($hostname =~ /vader/i) { 

  $courses = "$inifile->{default}->{syslab}"; 

  $servers = "$inifile->{default}->{vader}"; 

 } 

 elsif ($hostname =~ /homer/i) { 

  $courses = "$inifile->{default}->{projects}"; 

  $servers = "$inifile->{default}->{homer}"; 

 } 

 elsif ($hostname =~ /wizard/i) { 

  $courses = "$inifile->{default}->{netlab}"; 

  $servers = "$inifile->{default}->{wizard}"; 

 } 

 elsif ($hostname =~ /milton/i) { 

  $courses = "$inifile->{default}->{voip}"; 

  $servers = "$inifile->{default}->{milton}"; 

 } 

 @coursesary = split(",",$courses); 

 @serversary = split(",",$servers); 

 $course = ""; 

 $server = 0; 

 while ( validCourse($course,@coursesary) eq 0 ) { 

  $course = prompt("Please input the course number ($courses): "); 

 } 

  

 while ( $server eq 0 ) { 

  $server = validServer(lc(prompt("Please input the storage server 

($servers): ")),@serversary); 

 } 

 $coursedn = "\"CN=$quarter-

$course,OU=Groups,OU=Students,DC=netsys,DC=labs\""; 

 if (groupCreated($coursedn) eq 0 )  { createGroup($coursedn); } 

 return ($course, $server, $quarter); 

} 

 

#3/12/06 JK 
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#1 - Valid name 

#2 - Invalid name 

#Checks to make sure that the input only contains letters, spaces and dashes 

sub validName { 

 my ( $name ) = @_; 

 if (!defined($name)) { return 0; } 

 if ( $name =~ /^[a-zA-Z\-\s]+$/ ) { return 1; } 

 else { return 0; } 

} 

 

#JK 

#Input lots of information that was collected through the getSettings sub. 

#Prompt for a username, first, last password and attempt to create the user. 

#The path and the distinguished name of the user will be created after 

#the username, first and last names are inputted.   

#The username and path are returned. 

sub userAdd { 

 my ( $course, $coursedn, $server, $quarter, $user, $badinput ) = @_; 

 my ( $dn, $pass, $path, $output, $first, $last ) = ""; 

 if ( $user eq "") { $user = prompt("Please input a username: "); } 

 while (userCreated($user) == 1) { 

  print "ERROR: The user $user already exists\n"; 

  printLocDesc($user); 

  print "Please remove the FOLDER and ACCOUNT manually if that is 

the desired name\n"; 

  $user = prompt("Please input another username: "); 

 } 

 if (!defined($first)) { $first = trim(prompt("Input first name: ")); } 

 while (validName($first) eq 0) { 

  print "ERROR: Invalid characters found.  Only letters, spaces and 

dashes are allowed\n"; 

  $first = trim(prompt("Please try again: ")); 

 } 

 if (!defined($last)) { $last = trim(prompt("Input last name: ")); } 

 while (validName($last) eq 0) { 

  print "ERROR: Invalid characters found.  Only letters, spaces and 

dashes are allowed\n"; 

  $last = trim(prompt("Please try again: ")); 

 } 

 while (groupCreated($coursedn) eq 0) { 

  print "ERROR: $coursedn not created.\nManually create this and 

add the user.\n"; 

 } 

 if (groupCreated($coursedn) eq 0 )  { createGroup($coursedn); } 

 

 $path = "\\\\$server\\students\\$quarter\\$course\\$user"; 

 $dn = "\"CN=$user,OU=Users,OU=Students,DC=netsys,DC=labs\""; 

  

 #This loop will continue to run if the password isnt complex 

 #It will return blank values and a 1 if the username is invalid, the 

entire function will be run again 

 #If everything worked, it returns the user name, path and a 0 so that 

the program will continue 

 while ($badinput ne 0) { 

  $pass = passPrompt(); 
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############################################################## 

#$output = DSOut(`dsadd user $dn -pwd \"$pass\" -fn \"$first\" -ln \"$last\" 

-display \"$first $last\" -desc \"$path\" -memberof 

\"CN=Students,OU=Groups,OU=Students,DC=netsys,DC=labs\" $coursedn 2>&1`); 

############################################################## 

############Alex Modified Here, Don't beat me################# 

############################################################## 

  $homedrv = "\\\\jabba\\students\\$quarter\\$course\\$user"; 

  $output = DSOut(`dsadd user $dn -pwd \"$pass\" -fn \"$first\" -ln 

\"$last\" -display \"$first $last\" -desc \"$path\" -hmdir \"$homedrv\" -

hmdrv \"S:\" -memberof 

\"CN=Students,OU=Groups,OU=Students,DC=netsys,DC=labs\" $coursedn 2>&1`); 

##############################################################   

############################################################## 

 

  if ($output =~ /complexity/) { 

   system("dsrm $dn -noprompt > NUL 2>&1"); 

  } 

  elsif ($output =~ /not a properly formed account name/) { 

   return ("","",1); 

  } 

  elsif ($output =~ /succeeded/) { 

    

   return($user,$path,0); 

  } 

 } 

  

} 

 

#This will analyze the output of dsadd, dsquery, and dsget type programs. 

#If the command fails, the error will be returned.  Otherwise, the succeeded 

#message will be returned. 

sub DSOut {  

    chomp(my ( $output ) =  @_); 

 my ( @result ) = split(/:/,$output); 

 if ( $result[0] =~ /failed/ ) { 

  if (defined($result[2])) { print "ERROR: $result[2]\n"; return 

$result[2]; } 

  else { print "ERROR: $result[1]\n"; return $result[1]; } 

 } 

 return $result[0]; 

} 

 

 

 

 

 

 

##THE SCRIPT 

##START CALLING ALL THE FUNCTIONS 

my ( $user, $dn, $path, $quarter, $course, $server,  $coursedn, $section, 

$sectiondn, $again ) = ""; 

my $keep = 0;#0 = Don't keep/1=keep settings 

my $adduser = 1;#1 - Keep adding a user (and get settings if necessary) 

my $badinput = 1;#1 - Bad input, to re run the useradd function 

 

while ( $adduser eq 1 ) { 
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 if ($keep eq 0) { 

  ($course, $server, $quarter) = getSettings(); 

  $coursedn = "\"CN=$quarter-

$course,OU=Groups,OU=Students,DC=netsys,DC=labs\""; 

  print "Example Student Path: 

\\\\$server\\$quarter\\$course\\abc1234\\\n"; 

  if (prompt("Keep these settings for all users created from now 

on? (y/n) [y]: ") =~ /^n/i ) { 

   $keep = 0; 

  } 

  else { 

   $keep = 1; 

   print "\nSETTINGS SAVED!\nQuarter: $quarter\nServer: 

$server\nCourse: $course\n\n"; 

  } 

 } 

  

  

  

 while ($badinput ne 0) { 

  ($user,$path,$badinput) = userAdd($course, $coursedn, $server, 

$quarter, $user, $badinput); 

  $dn = "\"CN=$user,OU=Users,OU=Students,DC=netsys,DC=labs\""; 

 } 

  

 if ( userDisabled($user) == 0 && userCreated($user) == 1 ) { 

  #Check if the path exists, if not, try to create it 

  #$pathexist values 

  #0 - Made successfully 

  #1 - Already existed 

  #Any other number - Unable to make the path 

  if ( -d "\"$path\"" ) { 

   $pathexist = 1; 

   print "Path existed; the NTFS permissions for the folder 

should be examined below.\n"; 

   system("cacls \"$path\""); 

  } 

  else { $pathexist = system("mkdir \"$path\""); } 

   

  #Make sure it was created successfully & fix NTFS permissions 

  if ( $pathexist == 0 ) { 

   print "$path created successfully\n"; 

   $caclsuser = system("cacls \"$path\" \/E \/G 

\"NETSYS\\$user\":C > NUL"); 

   $caclsgroup = system("cacls \"$path\" \/E \/R \"Users\" > 

NUL"); 

   if ( $caclsuser == 0 ) { print "Change control to \"$path\" 

granted to $user\n"; } 

   else { print "There was an error giving the user full 

access to the users directory\nPlease contact a NetSys Lab Server 

Administrator.\n"; } 

   if ( $caclsgroup == 0 ) { print "Users permissions revoked 

for \"$path\"\n"; } 

   else { print "There was an error removing the Users Read 

permissions on the users directory\nPlease contact a NetSys Lab Server 

Administrator.\n"; }  
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  } 

  elsif ( ! -d $path && $pathexist != 0) { 

   print "WARNING: The path could not be created.  Program 

terminating\nContact a NetSys Lab Server Administrator.\n"; 

   exit 1; 

  } 

 } 

 

 #Prompt to see if the script will loop again 

 $again = "f"; 

 while (!($again =~ /^[yn]/i)) { 

  $again = prompt("Would you like to add another user? (y/n): "); 

  if ($again =~ /^y/i) { 

   $badinput = 1; 

   $adduser = 1; 

   $user = ""; 

  } 

  elsif ($again =~ /^n/i) { 

   $adduser = 0; 

   $user = ""; 

  } 

 } 

} 

 

 

7.8 startnet.cmd 

 
@echo off 

wpeinit 

rundll32.exe setupapi,InstallHinfSection DefaultInstall 132 wimfltr.inf 

wdsmcast /transfer-file /server:192.168.66.140 /namespace:"wimtest" 

/username:koppe\joe /password:asdf1234! /sourcefile:temp.wim 

/destinationfile:c:\temp.wim 

mkdir c:\mount 

imagex /mount c:\temp.wim 1 c:\mount 

move c:\mount\* c:\templates\ 

imagex /unmount c:\mount 

rmdir c:\mount 
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