
Differential Virtualization for Large-Scale System Modeling

By

Jason Koppe

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in

Computer Security and Information Assurance

Rochester Institute of Technology

B. Thomas Golisano College

of

Computing and Information Sciences

September 26, 2008

Rochester Institute of Technology

B. Thomas Golisano College

of

Computing and Information Sciences

Master of Science in

Computer Security and Information Assurance

Thesis Approval Form

Student Name: Jason Koppe

Thesis Title: Differential Virtualization for Large-Scale System Modeling

Thesis Committee

Name Signature Date

Bo Yuan

Chair

Bill Stackpole

Committee Member

Yin Pan

Committee Member

Thesis Reproduction Permission Form

Rochester Institute of Technology

B. Thomas Golisano College

of

Computing and Information Sciences

Master of Science in

Computer Security and Information Assurance

Differential Virtualization for Large-Scale System Modeling

I, Jason Koppe, hereby grant permission to the Wallace Library of the Rochester
Institute of Technology to reproduce my thesis in whole or in part. Any reproduction
must not be for commercial use or profit.

Date: ___________ Signature of Author: __________________________

Abstract: Today’s computer networks become more complex than ever with a vast number of

connected host systems running a variety of different operating systems and services. Academia

and industry alike realize that education in managing such complex systems is extremely

important for computer professionals because, with computers, there are many levels of detailed

configuration. Configuration points can occur during all facets of computer systems including

system design, implementation, and maintenance stages. In order to explore various hypotheses

regarding configurations, system modeling is employed – computer professionals and

researchers build test environments. Modeling environments require observable systems that are

easily configurable at an accelerated rate. Observation abilities increase through re-use and

preservation of models. Historical modeling solutions do not efficiently utilize computing

resources and require high preservation or restoration cost as the number of modeled systems

increases. This research compares a workstation-oriented, virtualization modeling solution using

system differences to a workstation-oriented, imaging modeling solution using full system states.

The solutions are compared based on computing resource utilization and administrative cost with

respect to the number of modeled systems. Our experiments have shown that upon increasing

the number of models from 30 to 60, the imaging solution requires an additional 75 minutes;

whereas, the difference-based virtualization solution requires an additional three (3) minutes.

The imaging solution requires 151 minutes to prepare 60 models, while the difference-based,

virtualization solution requires 7 minutes to prepare 60 models. Therefore, the cost for model

archival and restoration in the difference-based virtualization modeling solution is lower than

that in the full system imaging-based modeling solution. In addition, by using a virtualization

solution, multiple systems can be modeled on a single workstation, thus increasing workstation

resource utilization. Since virtualization abstracts hardware, virtualized models are less

dependent on physical hardware. Thus, by lowering hardware dependency, a virtualized model

is further re-usable than a traditional system image. If an organization must perform system

modeling and the organization has sufficient workstation resources, using a differential

virtualization approach will decrease the time required for model preservation, increase resource

utilization, and therefore provide an efficient, scalable, and modular modeling solution.

I

Table of Contents

TABLE OF CONTENTS .. I

TABLE OF FIGURES ... III

TABLE OF TABLES ... IV

ACKNOWLEDGEMENTS ... V

1 INTRODUCTION .. 1

1.1 PROBLEM ... 1

1.2 IMPORTANCE .. 3

1.3 REVIEW OF CURRENT RESEARCH .. 3

1.4 DOCUMENT OUTLINE ... 6

2 BACKGROUND .. 7

3 RESEARCH DESIGN ... 10

3.1 ASSUMPTIONS AND LIMITATIONS ... 10

3.2 ENVIRONMENT OVERVIEW ... 13

3.2.1 Network Services ... 13

3.2.2 Workstation Deployment .. 14

3.2.3 Virtual Machine Templates .. 20

3.2.4 Using the Environment .. 23

3.3 OPTIMIZING RESTORATION TIME ... 24

3.4 DIRECT MODIFICATION CHARACTERIZATION .. 28

3.5 WORKSTATION CAPABILITIES .. 29

4 RESULTS AND ANALYSES .. 31

4.1 OPTIMIZING RESTORATION TIME ... 31

4.2 DIRECT MODIFICATION CHARACTERIZATION .. 35

4.3 WORKSTATION CAPABILITIES .. 41

5 CONCLUSIONS .. 42

6 FUTURE WORK ... 43

7 APPENDICES .. 44

7.1 RESTORATION RESULT DATABASE .. 44

7.2 DIFFVIRTRESULT.PS1 ... 48

7.3 BATCHANALYZE.PS1 .. 49

7.4 STARTTEST.PS1... 50

7.5 MASSIMAGE.PS1 ... 51

7.6 DEFAULT.XML .. 58

7.7 USERADD.PL ... 60

7.8 STARTNET.CMD .. 68

II

8 REFERENCES ... 69

III

Table of Figures

FIGURE 1 – SAMPLE LAB DIAGRAM ... 12

FIGURE 2 – HOME DIRECTORY SPECIFICATION UPON USER CREATION .. 14

FIGURE 3 – DHCP OPTIONS REQUIRED FOR WDS .. 15

FIGURE 4 – NETSH COMMANDS TO CONFIGURE DHCP OPTION 60 .. 16

FIGURE 5 – SERVERMANAGERCMD TO INSTALL WDS .. 16

FIGURE 6 – CREATING AND ADDING A CAPTURE BOOT IMAGE .. 17

FIGURE 7 – VISTA SYSPREP COMMAND TO PREPARE A SYSTEM FOR CAPTURE .. 17

FIGURE 8 – XP SYSPREP COMMAND TO PREPARE A SYSTEM FOR CAPTURE ... 17

FIGURE 9 – PXE PROCESS REQUIRING F12 TO BOOT ... 17

FIGURE 10 – WDS BOOT MANAGER .. 18

FIGURE 11 – CAPTURE WIZARD, CAPTURE SOURCE ... 18

FIGURE 12 – CAPTURE WIZARD, CAPTURE DESTINATION .. 19

FIGURE 13 – CAPTURE WIZARD, GROUP CHOICE AFTER AUTHENTICATION ... 19

FIGURE 14 – ENABLING TEMPLATE MODE .. 21

FIGURE 15 – CLONE SELECTION.. 23

FIGURE 16 – RESTORATION EXPERIMENT RESULT RECORD EXAMPLE ... 27

FIGURE 17 – SIMULTANEOUS RESTORATION OF MODELS .. 32

FIGURE 18 – DISK THROUGHPUT DURING XP RESTORATION WITH SIXTY MODELS ... 34

FIGURE 19 – DISK THROUGHPUT DURING IMAGING RESTORATION WITH SIXTY MODELS .. 34

FIGURE 20 – SIZE OF EIGHTY DISTINCT LINKED CLONES ... 35

FIGURE 21 – SIZE OF EIGHTY DISTINCT GHOST IMAGE .. 35

FIGURE 22 – DISK THROUGHPUT DURING DIRECT MODIFICATION RESTORATION WITH SIXTY MODELS 36

FIGURE 23 – DISK OPERATIONS DURING FIRST LAUNCH OF MODEL USING XP DIRECT MODIFICATION 37

FIGURE 24 – DISK OPERATIONS DURING FIRST LAUNCH OF MODEL USING VISTA DIRECT MODIFICATION 38

FIGURE 25 – DISK OPERATIONS DURING LAUNCH OF MODIFIED MODEL USING XP DIRECT MODIFICATION 39

FIGURE 26 – DISK OPERATIONS DURING LAUNCH OF MODIFIED MODEL USING VISTA DIRECT MODIFICATION 39

FIGURE 27 – DISK OPERATIONS DURING SHUTDOWN OF MODIFIED MODEL USING XP DIRECT MODIFICATION 40

FIGURE 28 – DISK OPERATIONS DURING SHUTDOWN OF MODIFIED MODEL USING VISTA DIRECT MODIFICATION 40

IV

Table of Tables

TABLE 1 – MEMORY ALLOCATION FOR VIRTUAL MACHINES ... 30

TABLE 2 – EXPECTED VERSUS ACTUAL REPORTS FROM RESTORATION EXPERIMENTS... 33

TABLE 3 – PERFORMANCE STATISTICS DURING THE XP RESTORATION WITH SIXTY MODELS .. 33

TABLE 4 – PERFORMANCE STATISTICS DURING THE IMAGING RESTORATION WITH SIXTY MODELS 33

TABLE 5 – PERFORMANCE STATISTICS DURING THE DIRECT MODIFICATION RESTORATION WITH SIXTY MODELS 36

TABLE 6 – DISK OPERATIONS FROM SERVER DURING INITIAL LAUNCH OF ONE MODEL ... 38

TABLE 7 – DISK OPERATIONS FROM SERVER DURING LAUNCH OF ONE MODIFIED MODEL ... 39

TABLE 8 – DISK OPERATIONS DURING SHUTDOWN OF ONE MODIFIED MODEL ... 40

V

Acknowledgements

Thanks…

To my persistent professor and advisor for life: my mother, Jennifer

To my temporary teachers and peers for life: my friends, including the RIT faculty and staff

To everyone who cares about me and my thoughts

1

1 Introduction

Complex computer networks exist throughout the world. In fact, computer networks are so vast

and growing so quickly that colleges and universities offer degree programs focused upon

computer system design and administration. An entire training industry exists for computer

certifications like Microsoft Certified Professional, Cisco Career Certifications and for other

major products. Further, there are even more computer certifications from organizations like

SANS and CompTIA. Academia and industry alike realize that education is important for

computer professionals because, with computers, there are many levels of granular configuration.

Configuration points range from the way a web browser displays a page to the fashion that a

network adapter queues packets for delivery or acceptance. In order to test hypotheses regarding

new or different computer system configurations, system modeling occurs – computer

professionals and researchers build test environments. Anti-malware researchers might setup a

quarantined computer network and launch potentially malicious software to understand its

behavioral traits. Software testers might setup multiple versions of different operating systems at

many different configuration granularities to verify whether the software executes as expected in

distinct environments. System administrators might setup a duplicate server environment to

assess the latest software patches and any negative impacts they cause. System imaging and

virtualization have both helped advance computer system modeling procedures and capabilities.

This research aims to determine infrastructures that employ existing resources to use and archive

large-scale heterogeneous system models by utilizing workstations to perform differential

operating system virtualization. By staging workstations with virtual machine templates, users

can create, store, and restore differential virtual machines based on the templates. Once a user

instantiates this difference, they can execute the difference using primarily the workstations

computing resources.

1.1 Problem

Large-scale modeling environments require systems that are easily configurable at an accelerated

rate. The cost to acquire, setup, and maintain modeling environments increases in terms of

hardware and person-hours as the number of modeled entities increases. Further, historical

modeling solutions do not use available resources to their upmost potential.

2

Models that use hardware specific imaging can lead to a model that underutilizes computing

resources since each workstation executes operations for a single operating system. Unless the

test requires each workstation to perform at one-hundred percent resource utilization, it is likely

that a virtualization-based model could achieve higher hardware resource utilization. To

elaborate, if a test requires simulated user activity similar to web browsing or document

authoring, a modeled entity should not be at full utilization at the processor, network, disk, or

memory. Further, these solutions, while useful in small environments and necessary for

situations like hardware configuration testing and disk forensics, do not scale as the number of

modeled systems increases because they require sufficient modeling hardware. For example, if a

tester needed to simulate fifty workstations running Red Hat Linux and fifty workstations

running Microsoft Windows 2000, a hardware specific imaging modeling approach requires the

tester to have one-hundred physical workstations dedicated to the test environment – this is not

practical.

Virtualization is one approach to utilize more efficiently the hardware available and thus

decrease the need for excessive hardware. System virtualization, in particular, has been gaining

attraction in data centers. This research doesn’t aim to focus on the benefits of data-center

oriented virtualization, but rather points out that centralized virtualization infrastructures outright

ignore the computing resources from a pool of workstations. Many of these products do not

account for the large number of high-powered workstations that are at the desk of developers,

testers, researchers, students, and other computer professionals. Imagine a software firm that

owns a workstation for each of its 200 engineers. Each workstation uses a 4 GHz processor and

4 GB of memory. Next, assume that each workstation cost $1,500 to purchase and deploy –

putting workstation expenditures total $300,000. Now, this firm notices that virtualization

products might facilitate their testing phases and have to make a decision between workstation-

based or centralized virtualization. How do you replicate the distributed 800 GHz of processing

power and 800 GB of memory space available from the workstations at a central location? If the

firm replicated the computing resources of their workstations in a server closet, they would pay

more money to purchase and deploy servers and, further, would be downplaying the capabilities

of the workstations. If they centralized their virtualization, then workstations would only

execute non-resource intensive applications like browsers and editors; thus, underutilizing the

massive amount of workstation computing resources.

3

Thus, explored in this research is a modeling solution that harnesses both workstation resources

and virtualization.

1.2 Importance

Generally, modeling is important to research because it enables scientists ―to apply quantitative

reasoning to observations about the world, in hopes of seeing aspects that may have escape the

notice of others‖ (Silvert 2001). Computer modeling is becoming much more important as

systems become more complex. This research could apply to, and therefore benefit, any

organization that performs computing research tasks ranging from software assurance to systems

education.

1.3 Review of current research

Research regarding the administration and execution of modeling environments has been

prevalent in academician-led research. Academicians are all wondering the same thing: how

does one provide environments where users can apply and model computer systems concepts?

Further, even if such environments are possible, how can one manage them in a low-cost

fashion? This section presents previous attempts at workstation-based virtualization for

computer system modeling that include minimal guest operating system support, minimal usage

of differential techniques, minimal performance analysis, no system deployment techniques, and

lastly, out-dated concerns of expensive monetary costs.

(Lei and Rawles 2003) raised practical cost and space concerns regarding space acquisition and

computing resource utilization. The central purpose of their study was to survey performance

and cost of three virtualization technologies that would enable a more practical lab environment.

Their research included both quantitative methods involving performance benchmarking with

different storage and virtualization technologies and qualitative methods regarding cost analysis.

They tested installation time of six virtual operating systems in three virtualization platforms

VMware Workstation, Microsoft Virtual PC, and Netraverse Win4Lin utilizing six storage

technologies on three separate host operating systems; further, they monitored resource

utilization on the host machines during these installations. Their experiment and analysis led to a

conclusion that any virtualization technology coupled with a Microsoft Windows host operating

system and a networked storage system was the most cost-performance effective environment to

4

enable applied system and networking administration learning. This study is unique in that it

quantifiably measures performance of the system at multiple points of interest: host resource

utilization, virtual OS installation time, and network utilization.

(Begnum et al. 2004) presented challenges their institutions experienced using traditional

physical hardware to enable students to learn and apply system administration concepts. The

purpose of their study was to provide an environment where students could manipulate systems

from an administrative context. The authors described use of User-Mode Linux (UML) as a

virtualization platform and My Linux Network (MLN) as a virtualization administration tool at

university and industry environments. The authors concluded that their use of virtualization

through User-Mode Linux enabled students more efficiently learn system administration

concepts. The authors stated that they’re approach to enabling students to apply system

administration concepts need only function ―as specified in the RFC’s‖ – therefore, they weren’t

required to offer specific operating systems or applications, just something that ―worked

correctly.‖ While their UML architecture enables system administration education in their

institution, other organizations might require implementation of heterogeneous architectures

including non-Linux operating systems.

Educators at the University of Cincinnati (Stockman, Nyland, and Weed 2005) faced mobility

and manageability issues surrounding a small deployment of workstation-based virtualization to

teach networking and system administration material. The purpose of their study was to present

their findings regarding a centralized delivery of virtual machines to a lab environment including

18 physical workstations to assist student mobility and staff system management. Their

experiment was centered on an Active Directory domain that included a network-attached

storage (NAS) system and eighteen workstations. The NAS ran Windows Server 2003 with dual

866 MHz processing cores, 1.5GB of memory, 2Gbit Ethernet adapter and a SCSI RAID-5

storage array and the workstations ran Windows Server 2003 each with a 2 GHz processor, 1 GB

of RAM, a 1Gbit Ethernet adapter and Microsoft Virtual PC. The test was to install an operating

system to a virtual machine that resided on the NAS; there were three stages of workstation

involvement: five, ten and eighteen workstations. The authors measured the time it took to install

the operating system at each stage of workstation involvement and noted that there was no

―noticeable‖ difference in installation time across the three stages. The authors concluded that

5

mobility could be achieved with a central storage for student systems and that managing base

virtual machines at the central storage was much simpler than distributing the base virtual

machines to the workstations. Regarding the test, the authors did not include quantifiable

performance characteristics. In addition to similar infrastructure management considerations,

this research methodology will contrast their use of centralized base virtual machines by de-

centralizing base virtual machines. The Stockman et al study did not mention the use of linked

clones. The use of Microsoft Virtual PC as a virtualization platform limits types of supported

virtual operating system to Microsoft operating systems; other organizations might require

implementation of heterogeneous infrastructures that include non-Microsoft operating systems.

Other educators (Vollrath and Jenkins 2004) sought to address their problem of limited physical

lab space; their lab consisted of 30 computers but was required to support nearly 60 students.

They experienced logistical issues regarding lab space availability and concerns regarding high-

cost instructional sign-offs. The goal of their study was explore implications and cost of using

virtualization to alleviate their space and sign-off problems. The study proposed the use of

Microsoft Virtual PC as a virtualization platform and further utilizing the differentiation feature

of Virtual PC for various procedural benefits. Vollrath, a student at the time, evaluated the

feasibility of their lab assignments in their test virtual environment. Their conclusions were

broad and included an out-of-lab grading process by saving student virtual machine differences

to external media, in-class exams from equivalent virtual machines are probable and easier

creation of lab assignments and hoped that their infrastructure would enable students to focus on

management rather than installation of systems. Vollrath and Jenkins study ostensibly used

Microsoft Virtual PC to support Linux and Microsoft operating systems; only Microsoft

operating systems are supported guest operating systems as detailed in the Microsoft Virtual PC

specifications (Microsoft Corporation 2007a). As stated previously, Microsoft Virtual PC might

not be an option for organizations that require implementation of heterogeneous infrastructures

that include non-Microsoft operating systems. Their use of virtual machine differences to lower

resource cost is a novel approach that this research project aims to utilize.

(Gaspar, Langevin, and Armitage 2007) sought to debunk virtualization ―misconceptions‖ and

clarify that virtualization for IT education is cost-effective and appropriate. Other than detailing

different virtualization technologies such as hardware emulators, full virtualization, and

6

paravirtualization, the core purpose of their study was to present their virtualization

implementation, known as SOFTICE (Scalable, Open source, Fully Transparent and Inexpensive

Clustering for Education). The authors state that in using open source applications (UML/MLN)

and not relying on virtual disk delivery to students as in (Stockman, Nyland, and Weed 2005)

makes their system more appealing and ―accessible over the internet.‖ (Gaspar, Langevin, and

Armitage 2007) argue that investing computing resources for workstation-oriented virtualization

is an ―investment [that] will sit mostly idle and unused.‖ Thus, (Gaspar, Langevin, and Armitage

2007) assume that institutions do not already have computing resource capacity to utilize

workstation-powered virtualization. Finally, (Gaspar, Langevin, and Armitage 2007) do not

address practical environments that implement non-Linux platforms.

(Stackpole et al. 2008) addressed the lack of evaluation for decentralized virtualization that

supports scalable, heterogeneous environments for use in system administration education. They

described the problems with a full operating system imaging solution. The crux of the paper is

the proposed usage of linked clones for storage of student-customized virtual machines. The

authors demonstrate that utilization of storage, network, and management resources would

decrease significantly because of the differential nature of the student data. This paper is the

basis for this thesis; this research aims to quantify the claims Stackpole et al. by measuring

performance and documenting management procedures.

1.4 Document Outline

The remainder of this document is organized as follows. Chapter 2 presents concepts basic to

understanding the research. In chapter 3, the research environment and experiments are

described. Following in chapter 4, results are presented and analyzed. Finally, conclusions are

drawn in chapter 5 and the research outlook is discussed in chapter 6.

7

2 Background

Traditionally, experimenting with computer systems meant one required either additional

computer hardware. By having additional hardware, additional physical systems could be

constructed and used in experiments. Boot loaders were developed to enable multi booting.

Multi booting involves installing more than one operating system to a workstation. After

installing more than one operating system and upon starting the workstation, one can select

which operating system to execute; thus, one can experiment with multiple logical systems on

one physical system. Imaging, a process of duplicating hard disk contents, proves useful in

system modeling. Using disk imaging, one can preserve the state of a disk by copying the

contents to another disk or by archiving it in a single file. With disk imaging, one can easily

configure similar workstations to have the same disk contents and, therefore, the same operating

system and software configuration. Disk imaging has been popularized through products from

companies like (Symantec 2008) and (Acronis 2008) and open source solutions like (Clonezilla

2008). Further, to increase efficiency when copying the same disk image to many disks, these

products harness the abilities of multicast IP transmissions. Multicasting enables a server to send

one copy of the disk image to many workstations, rather than sending many copies to many

workstations. By only requiring the server to access and send the image once, the server

requirements are decreased. Therefore, multicast enables scalable imaging and is useful when

imaging many similar workstations. However, in the end, spare hardware is costly and multi

booting or system imaging does not fully utilize the workstation hardware.

Newer to system modeling is the concept of virtualization, or abstracting computer hardware.

Different types of virtualization exist, but for the purposes of this research, it is important that the

virtualization platform enable the concurrent execution of multiple operating systems on a single

workstation. The virtualization platform used in this research, VMware Workstation, abstracts

nearly all of the underlying hardware. ―VMware Workstation virtualizes I/O devices using a

novel design called the Hosted Virtual Machine Architecture […] that takes advantage of a pre-

existing operating system for I/O device support‖ (Sugerman et al. 2001).

In this architecture, the CPU virtualization is handled by the VMM. A guest application

or operating system performing pure computation runs just like a traditional mainframe-

style virtual machine system. However, whenever the guest performs an I/O operation,

8

the VMM will intercept it and switch to the host world rather than accessing the native

hardware directly. Once in the host world, the [virtualization application] will perform

the I/O on behalf of the virtual machine through appropriate system calls.

This type of virtualization is also employed by Xen; however, the platforms differ in how

processor instructions are abstracted. Hardware-assisted virtualization, supported by AMD-V

and Intel VT, offer full, consistent processor abstraction at a loss of memory throughput

(Nakajima 2007) and require special hardware. In this research, VMware Workstation enables

the execution of multiple virtual machines per workstations, so one can achieve a higher

utilization of workstation resources. Therefore, by coupling virtualization and disk imaging, one

can configure many workstations with multiple virtual machines and increase the utilization of

modeling resources. To optimize resource utilization further, many virtualization products offer

the ability to create differential virtual machines. (Stackpole et al. 2008) provide the following

an explanation of linked clones, which are VMware’s implementation of differential virtual

machines, and offer insight as to how differential virtual machines optimize storage

requirements.

The use of VMware’s linked clones is critical to the efficient use of network and storage

resources. VMware defines a linked clone as “a copy of a virtual machine that shares

virtual disks with the parent virtual machine in an ongoing manner […while…] changes to

the disk of the linked clone do not affect the parent.” While the size of a modified operating

system image is the sum of the size of the operating system and the modifications, the size of

a linked clone is merely the size of the modifications. When saving modifications, linked

clones consume less storage space; therefore, linked clones more efficiently use disk space

than full system images.

At a minimum, computer networks require network services that offer high-level features for

basic network usability. To enable any sort of communication, computers must address others; a

basic network service, such as a DHCP server, is useful because it dynamically assigns addresses

to computers. The domain naming protocol (DNS) helps humans to address computers by

mapping a character based name to a computer IP address. Further, any computing environment

where user accountability or access control is required, identities must be authenticated;

9

therefore, users must prove they are whom they claim. After authentication, certain users might

be privy to certain information but not others. Access control provides a mechanism by which

administrators can specify which users have access to which information. Commonly, many

users have access to the same information. Thus, information sharing is employed. Just as

libraries share information, books, from one location, computers can share information from one

location, servers. By coupling access control with information on a commonly accessible server

such as a file server, administrators can restrict and permit certain users to access a single piece

of information. These network features are basic requirements of any computer network; the

proposed modeling environment is no exception.

10

3 Research Design

In this chapter, an environment that supports differential virtualization on shared-use

workstations is presented. Then, three experiments using the environment are detailed. In the

first experiment, this research compares a workstation-oriented, virtualization modeling solution

using system differences to a workstation-oriented, imaging modeling solution using full system

states; the solutions are compared based on computing resource utilization and administrative

cost while increasing the number of modeled systems. The second experiment attempts to

deduce storage requirements for a specific differential virtualization approach. The third

experiment demonstrates the capabilities of an individual workstation to operate many virtual

machines. In section 3.1, overall assumptions and limitations for all experiments are discussed.

Section 3.2 details environment implementation. Sections 3.3, 3.4, and 3.5 detail the three

separate experiments. The results and analyses are presented in chapter 4.

3.1 Assumptions and Limitations

This research does not intend to determine whether clustered server-grade virtualization or

workstation-based virtualization is better suited for modeling. Therefore, it is assumed that this

research applies to organizations that have a substantial number of workstations whose combined

processing ability and memory space is underutilized.

It is assumed that there are benefits to preserving model state and that saving progress is

important ability that, when technically feasible, enhances the user experience. Thus, a large

portion of this environment is focused on preserving the state of a model.

In order to measure user experience with a particular environment, it is safe to assume that if

users spend less time creating, saving, and restoring the model, they can spend more time

working with the model. It is assumed that having more actual time to use and manipulate the

model is beneficial to modeling.

The usability of a model is independent of the preparation and archival method. Therefore, it is

also assumed that even though many virtual operating systems can execute on a physical

workstation, each virtual operating system should behave and respond as well as the same

operating system installed in a traditional, physical sense; this means that the model has realistic

11

usability. Additionally, software installed on models may behave differently since software can

detect its operating environment. Thus, it is also assumed that modeled processes and systems

do not purposely behave differently within a virtualized model.

A rather large assumption is that the administrators employ Microsoft Active Directory with

Microsoft DNS, DHCP, and File Services. Active Directory offers seamless authentication and

access control, two features that the shared modeling environment requires. Further, it is

assumed that, since Active Directory is a highly pervasive technology, there is no need to

describe a basic setup of an Active Directory instance. In addition, VMware Workstation is the

chosen virtualization platform for this environment because it offers extensive guest operating

system support (VMware, Inc. 2008a).

For the purposes of testing and demonstrating a research environment, principles like least

privilege, role based policy enforcement, resource quotas, and other areas that require attention

in a practical deployment of such a modeling solution are ignored. It is assumed that those

implementing a true instance of the research environment will pay attention to many security-

focused areas that this research ignores. Throughout the remainder of this chapter, configuration

points that require more attention in a practical deployment are annotated.

In modeling this research, scope limitations are required. There are initial components, such as

workstations, servers, network hardware, storage solutions, and operating systems, from which

samples must become determined. While modifying the configuration of components in the

sample might yield different performance results, this research used the standard hardware

configuration from the sampled laboratory yet varies operating systems on the workstations. The

existing components in the Systems Administration laboratory for the NSSA department at RIT

are used. The laboratory contains twenty benches each with four workstations. The eighty

workstations operate a 3.4 GHz processor, 3 GB of memory, 110 GB hard disk, and two one-

gigabit network adapters. Each workstation has a one-gigabit network connection to a data

subnet while the other adapter connects to the bench hub. A Cisco 6509 with one-gigabit

capable ports provides the laboratory network switching and routing features. A server, noted as

Jabba SRV in the diagram below, running Windows Server 2008 is equipped with 8 GB of

memory, an Adaptec 2820SA RAID adapter, five hard SATA disks in a RAID 5 array, and an

12

Intel quad-gigabit network adapter offers networked file services for the laboratory using a four-

gigabit bandwidth network team. Finally, the Active Directory infrastructure is comprised of a

set of virtual machines running on a VMware ESX cluster of Dell PowerEdge 2850 rack mount

servers, one of which is noted as Vader SRV in the diagram below. Figure 1 portrays the

laboratory from a logical perspective; insignificant physical entities are not illustrated.

Figure 1 – Sample lab diagram

13

3.2 Environment Overview

This overview describes, explains, and justifies the procedures required to implement an

environment that supports differential, workstation-based virtualization for mobile computer

system modeling. The remaining subsections describe an implementation of the environment.

The ideal environment stores differential virtual machines at a highly available storage solution

for two reasons. The first, mobility, is a necessary feature for modeling environments when

there are more users than workstations. The second reason is to uphold data redundancy – store

important data in some way to decrease the risk of data loss or inaccessibility in the unfortunate

event of infrastructure error or failure. This is not to say that linked clones must be stored at a

highly available storage solution all of the time. In fact, this research concludes that caching

linked clones on workstations prior to executing might be more feasible.

On the workstations, an operating system and template virtual machines are installed prior to

user interaction. Once a user has an authorized account and networked home directory, they can

initiate logon sessions with at least one workstation. Once the user has initiated at least one

session, they can create linked clones within their networked home directory. Once the linked

clones are created, they can be configured and powered on — this can be considered the start of

a user’s modeling session. As the user manipulates their linked clones, their modifications are

stored to the network share whenever the virtualization software dictates writes to the virtual disk

or virtual memory. At any time, the user can snapshot, suspend or power off their linked clone

to save the current state of their model to the file server — this can be considered the end of a

user’s modeling session. Once the modeling session is complete, the user can end their logon

session. Later, when the user returns, they initiate at least one logon session to restart their

modeling session by opening, configuring and powering on their linked clones.

3.2.1 Network Services

In chapter 2, the usefulness of network features like authentication and access control are

presented. Using Microsoft Active Directory, Domain Name Services, and File Services, one

can accomplish these features. However, this research environment does not require detailed

configuration of these services beyond their basic operating state. Therefore, this research will

not discuss their installation and configuration at length. It is pivotal to configure Active

14

Directory and Domain Name Services prior to other services because all remaining services rely

on Domain Name Services to access Active Directory and further rely on Active Directory for

authentication and role-based access control. This research recommends configuration of File

Services prior to user creation.

The creation of users is an important and potentially time-consuming process. For this

environment, it is important that each user obtains control of a home folder and that this home

folder is automatically mapped when the user performs logon to a domain-joined workstation.

The home folder is the central location where the user stores their linked clones. It is

recommended to use a script to automate a majority of the process and prevent user-error. Such

a script would likely utilize cacls.exe and icacls.exe to modify access lists on the home

directories. Further, the directory services utilities are included in Server 2008 as the feature,

RSAT-ADDS. The directory service utilities assist with managing AD objects and fan facilitate

the user creation process. The add utility, dsadd.exe, enables object attribute configuration upon

creation. When dsadd.exe is used in context of user additions, the hmdir attribute signifies the

home folder and the hmdrv attribute signifies to which local drive the hmdir will be mapped

when the user logs onto a workstation. For example, the command in Figure 2 adds a user

named john to the default users’ organizational unit with a home directory of \\server\share\.

The share will be mapped to Z:\ when john logs on to a domain-joined workstation. In addition

to the directory service tools, many Microsoft programming and scripting languages offer

façades to the Active Directory Services Interfaces (Microsoft Corporation 2008g).

dsadd user "CN=john,CN=Users,DC=koppe,DC=thesis"

-hmdir \\server\share

-hmdrv z:

Figure 2 – Home directory specification upon user creation

3.2.2 Workstation Deployment

The Dynamic Host Configuration Protocol, DHCP, leases an IP address to a computer that

requests an IP address. For this thesis, it is assumed that DHCP is already in place and that

administrators install Windows Deployment Services, WDS, on a separate server. This section

begins by detailing what modifications to the DHCP service configuration are necessary to

cooperate with a Windows Deployment Service instance executing on a distinct IP address.

15

Next, this section details the configuration of a WDS server to enable deploying operating

systems to workstations.

There are many important DHCP configuration concepts. Since DHCP leases IP addresses,

DHCP traffic does not natively traverse networks. However, DHCP relay agents perform this

multi-network action. Further, DHCP has a notion of lease scope. This means that

administrators must configure the DHCP service to offer and acknowledge a range of addresses.

For the purposes of this thesis, network relaying and scope configuration is not of interest, but is

required. For network usability purposes, practical implementations need to consider these

configuration areas. For the purposes of illustrating how DHCP interoperates with WDS,

configuration is performed on an entire DHCP server scope; however, one could extend these

configuration steps to smaller scopes and more servers. Using the netsh utility (Microsoft

Corporation 2005), one could dynamically configure DHCP settings at a specific time or through

user-initiated script. For example, an administrator might only want WDS to function during a

specific period – one way to achieve this is through automated, scheduled netsh tasks.

WDS requires three specific DHCP configuration settings including the address of the WDS

server, a PXE specification, and the boot filename (Microsoft Corporation 2008c). The

following screenshot, Figure 3, shows the specific DHCP options configured to direct PXE

clients to download a specific boot file (boot\x86\wdsnbp.com) from a specific WDS server

(192.168.66.150).

Figure 3 – DHCP options required for WDS

Statically configuring the boot\x86\wdsnbp.com does not limit deployment to x86 architectures;

architecture detection commences after the boot program executes. Further, since DHCP is on a

separate server from WDS, the administrator must create and define option 60 using either netsh

or the graphical interface. Figure 4 below shows the netsh commands to create and configure

option 60.

netsh Dhcp Server Add Optiondef 60 "PXEClient" STRING 0 comment="PXE

16

Support" "PXEClient"

netsh Dhcp Server set optionvalue 60 STRING "PXEClient"
Figure 4 – Netsh commands to configure DHCP option 60

Now that DHCP directs PXE clients to the WDS server, the WDS server needs to be configured.

The Windows Deployment Services (WDS) ―enables rapid deployment of Windows to

computers via network-based installation‖ (Microsoft Corporation 2008c). This research uses

WDS to install the workstation operating systems. Since it offers multicast support, the version

of WDS that this research uses is a role in Windows Server 2008. Use servermanagercmd.exe,

as illustrated below in Figure 5, or the Server Manager graphical console to install the role.

servermanagercmd -install WDS

Figure 5 – Servermanagercmd to install WDS

Once installed, the server requires initialization. Initialization uses servermanagercmd.exe or the

Server manager graphical console. The initialization process includes the creation of the Remote

Installation share, DHCP option configuration, and PXE response configuration. Microsoft

recommends placing the Remote Installation share on a different volume than the operating

system. This research assumes the DHCP server exists at a separate address; therefore, the

default DHCP configuration is acceptable. Finally, set PXE to respond to all unknown and

known clients. The value of this configuration instructs the WDS server to permit access to

specific workstations. Since the PXE response setting is an access control, consider security

when configuring this in a practical environment.

Upon initialization, WDS suggests adding images. In WDS, there are different types of images;

however, this research details usage of three types: install, boot setup, and boot capture images.

The initialization wizard asks for an image source directory such as one found on Vista SP1 or

Server 2008 media. By providing the sources directory, one boot setup image and some install

images are added. A boot setup image enables the installation of an install image. For example,

a workstation boots from the network and loads the boot setup image. Then, the boot setup

image installs and configures a custom install image to the workstation.

To deploy custom images to the workstations in the modeling environment, an administrator can

make a custom install image through a process known as capturing. First, a capture image is

created on the WDS server. A capture image is created using wdsutil.exe, as illustrated in Figure

6 below, or the Windows Deployment Services console.

17

wdsutil /new-captureimage

/image:"Microsoft Windows Longhorn Setup (x86)" /architecture:x86

/destinationimage /filepath:"c:\capture.wim"

wdsutil /add-image /imagefile:"c:\capture.wim" /Imagetype:boot

/Name:"Microsoft Windows Capture (x86)”

Figure 6 – Creating and adding a capture boot image

The capturing process is similar to a traditional system imaging process. An operating system is

installed on a reference computer and customizations are made. Then, the system must be

prepared with the Microsoft Sysprep utility (Microsoft Corporation 2008c). While the Sysprep

utility is included in Vista, it must be downloaded for XP as a part of the Deployment Tools

package (Corporation 2008).

%systemroot%\system32\sysprep\sysprep /oobe /generalize /reboot

Figure 7 – Vista sysprep command to prepare a system for capture

sysprep –mini –reseal -reboot

Figure 8 – XP sysprep command to prepare a system for capture

Once prepared, the workstation reboots and begins the PXE process. To arrive at the boot

selection screen, press F12 as directed in Figure 9 below.

Figure 9 – PXE process requiring F12 to boot

After hitting F12, the customized operating system on the workstation can be captured by

selecting the capture image from the network boot screen as depicted in Figure 10 below. Note

that the capture image will be displayed with the name specified when the image was added (see

Figure 6 on page 17).

18

Figure 10 – WDS Boot Manager

WDS first captures the system image to a drive local to the workstation; therefore, there must be

a volume with sufficient free space attached to the workstation prior to capturing. The next

figures, Figure 11, Figure 12, and Figure 13, illustrate the capture process. Note that in Figure

12 the Location must have sufficient free space to store the capture image. In this example, C:\

is a 20GB volume with 4GB of used space. This means that the image will be approximately

4GB. Since there are 16 GB of free space on the volume, the image can be created successfully

before being uploaded to the WDS server.

Figure 11 – Capture Wizard, Capture Source

19

Figure 12 – Capture Wizard, Capture Destination

Figure 13 – Capture Wizard, group choice after authentication

After being captured to the local system, the custom install image is added to the WDS server

and can be deployed to one or many workstations. This deployment process includes booting

from the network, selecting a boot image, authenticating identity, selecting an install image,

installing Windows, renaming the workstation, and joining the Active Directory domain. The

deployment process can be performed manually or automatically. Manual deployment might

take place when deployment is required for a small number of workstations. A manual

installation for a small number of workstations is not time consuming and is similar to the

capture process. This research suggests scripted multicast deployment of a specific install image

to workstations using the massImage.ps1. This script automates the WDS configuration steps

necessary to multicast an install image. The script requires PowerShell 2.0 CTP (Microsoft

Corporation 2007b) and a default.xml similar to the one in appendix 7.6 on page 58. The

20

deployment process and other WDS-related processes are detailed in a Microsoft TechNet

article, titled Windows Deployment Services Processes (Microsoft Corporation 2008d); further,

the automated steps of the massImage.ps1 script are documented in the script heading comments

(see appendix 7.5, page 51). An unattended installation can become very complex. The example

in the appendix, default.xml, installs a Windows Vista image to a 20GB C:\ partition on the first

disk, creates and formats a second partition P:\ with the remaining space on the first disk,

renames the computer according to the WDS naming pattern, and joins the domain

TESTDOMAIN with credentials TESTUSERNAME and TESTPASSWORD. In a true

environment, care should be taken to assure that the TESTUSERNAME role has limited

abilities; see Performing Unattended Installations from TechNet (Microsoft Corporation 2008e)

for detailed information about automating installation.

In order for the workstations to name according to a naming pattern, they must either be

prestaged or started in a specific order. WDS uses Active Directory to name computers. During

the deployment process, WDS sets the workstation name based on the hardware UUID or the

network adapter MAC address. If either of these is known, the workstations can be prestaged

using wdsutil.exe (included when the WDS-RSAT feature is installed in Windows Server 2008).

If not, WDS can assign names based on a defined pattern. For example, one could define a

pattern WS%02# that would cause WDS to name new workstations WS01, WS02, WS03, etc.

Ultimately, if workstation names are important to an organization, WDS offers flexible

configurability to the workstation naming process.

3.2.3 Virtual Machine Templates

Virtual machine templates are the basis for linked clones. Configuring a template requires a few

extra steps beyond basic virtual machine creation steps. Once the virtual machine is created, the

virtual operating system in installed and customized, a snapshot must be taken. Once the

snapshot is taken, the virtual machine must be configured to template mode. This is completed

in the virtual machine settings dialog in the options tab as shown in Figure 14 below.

Alternatively, a snapshot can be performed via the command line using the vmrun.exe utility and

by adding templateVM = "TRUE" to the .vmx configuration file.

21

Figure 14 – Enabling template mode

Once the templates are created, they must be stored on each workstation. By storing virtual

machine templates on each workstation, the environment offers a reduction in the time required

for user model restoration (the experiment detailed in section 3.3 proves this claim). The task of

restoring the base operating system or virtual machine template is removed from the user and

given to management. The deployment process, as discussed in the previous section, is the

opportune time to move virtual machine templates to the workstations. Prior to capturing the

custom install image, the administrators could inject the virtual machine templates to a folder in

the custom image.

After initial deployment, a process in which administrators can add, update, or replace virtual

machine templates is ideal. If a new operating system is to be modeled or a template is

configured improperly, the templates need to be updated on each workstation. There are a

number of ways to achieve this. One way is to re-deploy the operating systems with an updated

image. This is, however, time consuming and inefficient. It is further effective to copy the

template modifications to each workstation instead of the entire operating system or all of

templates. Using Robocopy.exe, an administrator could script copying just the differences

between a virtual machine template repository and the template folder on each workstation

(Microsoft Corporation 2008a). Undoubtedly, other third party utilities and file transfer

protocols exist to perform such differential copying. However, they all perform the copying in

parallel or series – unless they use multicasting. WDS offers the ability to multicast data to a

workstation outside of an installation process. This is accomplished using a custom namespace,

22

created with wdsutil.exe, and having workstations join namespace with wdsmcast.exe.

Workstations can join the namespace while executing their normal operating system if Windows

Vista SP1 and Server 2008 AIK is installed (Microsoft Corporation 2008b). Otherwise, a custom

boot image can be created on any server where the latest AIK is installed. The process of

creating the custom image is detailed in a TechNet article titled Using Transport Server

(Microsoft Corporation 2008f) in the section titled Using a Transport Server for Multicasting. A

multicast namespace is created in much the same fashion that a multicast transmission is created.

A script similar to massImage.ps1 could be created to facilitate the process of multicasting

updated templates to all modeling workstations. Firstly, a template image must be created

because multicasting is optimized for single file transfers (Sadler 2007). A template image can

by making a differential-update version of the template repository in a folder using

Robocopy.exe. Then, that directory must be mounted to a volume letter using subst.exe.

Finally, the virtual disk can be captured using imagex.exe, from the Windows Server 2008 AIK.

Once the template image is made, the image should be stored in the WDS REMINST

subdirectory images. Then, the namespace must be created using the path to the images

subdirectory as the /configstring parameter in a wdsutil.exe /new-namespace command.

If using a custom boot image, the image should have wdsmcast.exe, imagex.exe,

wimfltr.sys, and wimfltr.inf along with a startup script; these files come with Windows

Server 2008 AIK. There is an example Win PE startup script, startnet.cmd, in appendix 7.8, on

page 68. However, this method might require the workstation to have twice as much free space

as the change in size of the template repository if additions or updates are required. For

example, if an administrator added ten templates to the template repository and the repository

size increases by 15GB to a total of 75GB. Then, if the hard disk in each workstation has 60GB

of templates and 20GB of free space, this solution will not work. This solution requires that the

workstation have 15GB of free space for the image to be stored by wdsmcast.exe and then

requires an additional 15GB of free space for the extraction of the templates. However, if there

is sufficient temporary space, this update method is network-optimized because of the multicast

transmission and size-optimized because of the differential image. There will always be a time-

tradeoff to analyze when choosing a template update process. If the update is small, it might be

worthwhile to Robocopy in series rather than using the wdsmcast.exe approach.

23

3.2.4 Using the Environment

When a user has a valid account on the domain, they can begin to use the modeling environment.

A user can perform three basic tasks: create linked clones, use linked clones, store linked clones.

Thus, a user must be trained in linked clone management. A high-level usage perspective is that

users create and use linked clones to model systems and processes. Users can store their linked

clones on a centralized storage solution to retain a specific system state. Creating linked clones

in VMware Workstation is straightforward: the user opens the template and selects Clone from

the VM menu as shown in Figure 15. It is crucial that users understand they are to use linked

clones and not full clones. In the cloning process, a user has the option to create a full clone.

However, this defeats the purpose of differential virtualization and users must be educated.

Figure 15 – Clone selection

24

The user then selects the template’s snapshot and the linked clone option. Lastly, the user must

specify a name and location to save the linked clone. There are two optional locations for linked

clones: the workstation or the file server. Linked clones should be stored in specific locations

based on their state. Linked clones exist in either the on or off state. When off and not active in

a model, linked clones should be stored on the file server in order to uphold the mobility

requirement of the shared modeling environment. However, during linked clone use, location is

a critical to usability. As detailed in the experiment in section 3.4, the computing resources

required for direct modification of linked clones on a file server exceed those offered by the

sampled file server. Thus, location during use must carefully be considered based upon file

server capabilities.

If the file server is capable of sustaining reasonable disk throughput when many linked clones

are being modified directly from the file server, this is the optimal modification approach. When

users save, open, and use their linked clones directly from the file server, this is called the direct

modification approach. However, if the file server is not capable of sustaining sufficient disk

throughput, the users must save and use their linked clones on each workstation. It is possible to

facilitate caching of linked clones on workstations using Windows Offline files or other third

party applications; however, it is not difficult for users to copy linked clones selectively to their

desktop for use in a modeling session. This approach can be considered a cache-and-update

approach. The linked clones must be cached to the workstation before the modeling session,

executed on the workstation during the modeling session, and updated on the file server after the

modeling session. The other approach, where linked clones are stored and used directly from the

file server is called the direct modification approach.

Once the user has created, and possibly cached, the linked clone, using VMware Workstation as

their personalized modeling environment is nearly as straightforward as using a traditionally

hardware-specific system. See the VMware Workstation documentation for usage instructions

(VMware, Inc. 2008b).

3.3 Optimizing Restoration Time

As discussed earlier, users perform basic tasks in the modeling environment: create, use, save,

and restore models. Consider restoration time as the amount of time it takes a user to restore a

25

modeling environment from a stored state. This process includes the workstation startup, user

login, downloading their stored model, and finally reaching a stage where their model is usable.

Logically, by reducing the time it takes to restore a model, the user has more time to manipulate

and work with the model.

The purpose of this experiment is to determine the amount of time it takes to restore many

modeling environments using a traditional restoration technique as well as how long it takes to

restore similar modeling environments using two variants of the differential virtualization

approach. By manipulating restoration approach and workstation operating system, one can

determine how the dependent variable of restoration time is affected.

In this experiment, the model environments are pre-configured and saved for a number of

simulated users ranging from one to sixty. The models are set to automatically login and execute

a startup script. This script will write a file to the file server in the folder specific to the

workstation. Therefore, by noting the time that the systems started and automatically creating a

file when the model is operational, one can understand how the restoration time changes with

respect to the number of model environments for each restoration approach and configuration.

With intent to correlate component ability with restoration time, the performance of the file

server is measured during restoration experiments; specifically, the disk operations per second,

disk bytes per operation, disk queue length, and network bytes transferred per second.

There are many assumptions for this experiment. Restoration time is considered in this

experiment; however, the time to save a model is similar to restoration time and save time can be

assumed dependent on the configuration in the same manner as restoration time. It is assumed

that there exists a pre-restoration process. This means, that the time it takes a user to situate

themselves at a set of workstations on which they will restore their model is entirely a different

stage of the modeling experience. It is assumed that there exists a post-restoration process. This

means that the user must interact with the restored modeling environment in a usable fashion.

While usability of the model plays a role in this experiment, it is not the primary intent. As users

modify a system instance within a model, the size of the model can increase. It is assumed that

restoration time increases somewhat linearly as users make more modifications to their models.

To that end and for expediency, the model-specific modifications are limited in this experiment.

26

The Ghost images and linked clones used in this experiment are Windows 2003 Server based

with no user-specific modifications other than the small scripts to automate the experiment for

the purposes discussed in the previous section.

In order to automate the experiment, certain pre-experiment configurations are necessary. IP

addresses are unique per physical workstation. A DHCP server assigns specified IP addresses to

workstations based on the MAC address of the workstation’s physical hardware. A unique

domain user account exists for each workstation. Each domain user account has full access

control of exactly one folder on the file server. In this folder, there exists a Ghost image and a

linked clone. For the ease of this experiment, all domain users can read these folders. Next, the

workstations are configured such that they first attempt to boot from a network location and then

the local disk. The sample laboratory has eighty workstations and some are not available due to

configuration errors or hardware issues. Therefore, at most sixty models are used in this

experiment.

To illustrate how restoration time changes with different approaches and configurations, three

heat sizes, one, thirty, and sixty, are designated. The size of the heat is representative of the

number of unique systems modeled in the environment. Therefore, a heat with a size of sixty

signifies the use of sixty workstations to achieve sixty unique modeled systems. This is

analogous to sixty users each modeling a unique single operating system. Three restoration

approaches are considered: Symantec Ghost system imaging, Windows Vista based cached

differential virtualization, and Windows XP based cached differential virtualization. In all

configurations, Windows Server 2008 is used as the operating system executing on the file

server. Effectively, this experiment is a cross-sectional survey with nine resulting datasets.

The technical objective of the experiment is to have one result file per workstation per heat. This

way, statistical analysis can be performed on a group of data points from a specific experiment.

At the end of the heat, a script finds the result files, calculates the difference between the start of

the test and the creation time of the result files, and generates a row in a results database for the

each workstation. Each row contains the test type, heat size, workstation name, and restoration

time in seconds. The following example database record signifies that a workstation named

maul101 took approximately 8935 seconds (or, approximately 2.5 hours) to restore using the

27

Ghost imaging approach while 59 others simultaneously restored. A simple script, called

batchanalyze.ps1, was written to perform basic data analysis a comma-delimited database using

this schema. For longevity, the result database is included in appendix 7.1, on page 44.

traditional,60,maul101,8935.3245675

Figure 16 – Restoration experiment result record example

At the beginning of the test, each workstation is pre-configured and powered off. To start the

test, a script called starttest.ps1 is executed on the file server. This script gathers input regarding

the test type and heat size. Upon input, the script notes the time and in quick succession, the

specified number of workstations are manually powered on. Starting the workstations will

continue down one of three avenues:

1. Automatic imaging using Symantec ghost

2. Windows Vista boot process

3. Windows XP boot process

The traditional preparation technique uses Symantec Ghost to restore a single operating system

to a single physical machine. In order to automate the imaging process, a special PXE boot

image was created. Since the workstations are configured to boot from the network, once the

workstation starts, it downloads and executes this special PXE boot image. The special PXE

boot image loads DOS, loads necessary drivers and maps a network folder based on the IP

address of the workstation. Then, each workstation downloads a unique Ghost image from the

file server to its local disk. It is crucial that each workstation reads a separate Ghost image in

order to simulate a realistic restoration process. When two users restore their unique

environment, they are reading a distinct set of files, not the same set. Therefore, each

workstation will copy a unique Windows 2003 R2 image to their hard drive and reboot. On

startup, a local user will automatically login and execute a script. This script will map a network

drive based on the IP address of the workstation and write a file to that network drive as

described earlier.

In the differential virtualization approaches, both Windows Vista and Windows XP are used as

the workstation operating systems. In order to accomplish the test, the system images were

prepared in a similar fashion as the images from the Ghost restoration approach. However, in

28

these tests, workstations are domain-joined and configured to auto-logon based upon the name of

the workstation. When the workstation starts, the domain user specific to that workstation

automatically performs the logon process and their network folder maps to Z:\. Then, a script

empties the user’s desktop, copies the linked clone from Z:\ to the user’s desktop, and starts the

linked clone. Further, once the linked clone starts, the same script runs a script inside the clone

that writes the file to the workstation-specific folder on the file server.

3.4 Direct Modification Characterization

As described earlier, an optimal environment is one where linked clones are modified directly on

a file server, not one that uses the cache-and-update approach. In the first heat of size sixty for

differential virtualization, the direct modification approach was utilized. Unfortunately, it was

quickly apparent that the tested file server would not support many simultaneously operating

linked clone virtual machines. This section analyzes the requirements for an environment where

direct modification is the primary approach when manipulating linked clones from a file server.

The purpose of the direct modification experiments is to determine requirements for executing

linked clones from network storage services. Clearly, after discovering that the file server in

used in the restoration experiment could not support sixty direct modifications, this behavior

requires further research.

In the experiments outlined in section 3.3, network utilization never reached its theoretical upper

limit. Even in the XP restoration experiment, when a maximum of 58,190,595 bytes per second

transferred through the network adapter, the adapter only reached roughly 11% utilization of its

4Gbit bandwidth. It is assumed that the storage solution is a limiting hardware piece of the IO

path. Since it is assumed that the storage solution is the problematic component in the IO path,

the data gathering and analysis is limited to primarily statistics of the file server disk. Further,

the model operating systems are limited to just Windows Sever 2003.

In this experiment, hardware performance statistics are gathered using Windows Performance

Monitor while one or many virtual machines are created, opened, or closed using the direct

modification approach. First, the restoration time experiment is attempted using direct

modification with sixty models executing from Vista workstations and performance statistics are

gathered. Then, in a separate test, a linked clone is created in a home folder and performance

29

statistics are gathered. Then, in another test, the linked clone is shutdown and performance

statistics are gathered. Finally, in the last test, the linked clone is started for a second time,

simulating a restoration, and the performance statistics are gathered. Thus, as a result, there are

four Performance Monitor data sets. One set from which analysis will show how many attempts

to utilize the direct modification approach affect the file server’s resources. While, from the

other three sets, analysis will show how specific actions on a single direct modification of a

linked clone affect the file server’s resources. Finally, a performance correlation is attempted

between a single direct modification and many direct modifications.

3.5 Workstation Capabilities

Until now, experiments have focused on differential system modeling using a single model per

workstation. However, virtualization plays a major role in this research because it facilitates the

operation of multiple models per workstation. The purpose of this experiment is to determine the

capabilities of workstations regarding the execution of virtual machines.

Firstly, it is assumed that users can intelligently manage resources allocated to each virtual

machine. In this modeling environment, the user has full control of their virtual machines;

therefore, the user must set reasonable resource limits for their virtual machines. The user must

understand that the workstation has a finite amount of disposable resources and that the

workstation operating system requires a portion of those resources. It is not assumed that there

exist precise resource limits but rather that the user can gauge usability within a model on a per-

model basis. For example, if a user runs a Windows Server 2003 virtual machine with 92MB of

memory and they are unable to run more than a few programs inside the virtual machine, the user

should gather that the virtual machine might benefit from an increase in virtual memory.

In this experiment, test is restricted to three model operating systems: Windows XP Professional,

Windows 2003, and CentOS 5. The same sample laboratory from previous experiments is

utilized. Virtual machine memory allocation remains at the default allocation size as set by

VMware Workstation virtual machine for a specific operating system type is created. Further,

the default VMware Workstation memory preferences are used.

30

This experiment is straightforward; using XP and Vista, multiple virtual machines are launched

on one workstation and ensure that each virtual machine is responsive. Table 1 below details the

amount of virtual memory allocated to each virtual machine for this experiment.

Virtual Machine Memory Allocation

Windows Server 2003 384MB

Windows XP Professional 512MB

CentOS 5.1 Server 384MB
Table 1 – Memory allocation for virtual machines

31

4 Results and Analyses

The logical services required to support a multi-user, shared, workstation-based modeling

environment greatly enhance the network from a management and usability standpoint.

Administrators can easily update model templates and can restrict access on a user or role-based

level. Users are able to move between workstations without worrying about hardware

dependency. It is crucial for an administrator to understand the purpose and configuration

intricacies each component and process. When compared to an environment that supports

modeling via traditional full-system based imaging, this environment has the same essential

services. The addition of Windows Deployment Services in the researched environment is a

complex process to learn. However, it is no different from learning the complex traditional

imaging process. In the researched environment, differential modeling reduces the amount of

user-specific data; thus, the overall storage requirements are decreased. In both the traditional

approach and the researched approach, a significant amount of managerial tasks exist including

maintain workstation images, maintaining models, and maintaining the network services. In the

researched approach, models are built once; whereas, in the traditional approach, the models are

hardware-specific and must be recreated when hardware changes. For those reasons,

management in the researched environment requires less attention than management in the

traditional environment. The remainder of this chapter presents results and analysis for the three

experiments described in chapter 3.

4.1 Optimizing Restoration Time

The imaging restoration approach costs more than two hours longer than the differential

virtualization approach with a heat size of sixty. Figure 17 shows the average time, in seconds,

that it took to restore one, thirty, and sixty modeling environments.

32

Figure 17 – Simultaneous restoration of models

While the experiment seeks a specific number of result files, this goal was not met during each

heat. For example, in the Vista based restoration approach, less than all of the linked clones

properly executed their startup script. The logon script used in the Vista test was not as effective

as the script used in the XP test. The script used in the XP test, diffVirtResult.ps1 in appendix

7.2 on page 48, passes the workstation name as a parameter to the vmrun.exe

runprograminguest command; whereas the script used in the Vista test utilized

renamefileinguest and then runprograminguest. The vmrun.exe renamefileinguest

command did not consistently function. Therefore, the Vista test yields a less accurate

representation of restoration time than the XP test and the remainder of analysis will focus on

describing the differences between the imaging and XP approaches. Even though the actual

1 30 60

Imaging 1294.039 4230.85 8784.804

DiffVirt-XP 190.184 208.911 322.306

DiffVirt-Vista 288.51 221.059 286.37

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
A

ve
ra

ge
 T

im
e

 (
s)

Number of environments

Simultaneous Environment
Restoration

33

number of result files does not equal the number of expected files; the expected number of linked

clones successfully restored and started. Table 2 details the actual number of result files

generated for each heat. The Vista based differential virtualization test has significantly lower

actual reports in the thirty- and sixty-sized heats whereas the imaging tests have slightly lower

actual reports.

Expected 30 60

Actual Imaging 29 57

Actual DiffVirt-XP 30 60

Actual DiffVirt-Vista 20 31
Table 2 – Expected versus actual reports from restoration experiments

Statistics were gathered regarding the server hardware performance using the Windows

Performance Monitor during the restoration tests for a ten-minute period. In Table 3, the

relevant statistics gathered during the XP restoration test with sixty modeled systems are shown.

In Table 4, the statistics gathered during the imaging restoration test with sixty modeled systems

are shown.

Item (per sec) MAX AVG TOTAL % SUM

Disk Reads 866 560 110,336 99.96
 110,385

Disk Writes 4 0 49 0.04

Disk Read Bytes 55,836,846 30,528,474 6,014,412,431 99.99
 6,014,756,007

Disk Write Bytes 28,673 1,744 343,576 0.01

Disk Queue Length 39 20.9949

Network Sent Bytes 58,190,595 25,888,362 2,200,510,747 98.87
 2,225,584,540

Network Received Bytes 900,447 288,205 25,073,794 1.13
Table 3 – Performance statistics during the XP restoration with sixty models

Item (per sec) MAX AVG TOTAL % SUM

Disk Reads 1,000 721 431,661 100.0
 431,661

Disk Writes - - - 0.00

Disk Read Bytes 32,450,628 23,350,984 13,987,239,500 100.0
 13,987,239,500

Disk Write Bytes - - - 0.00

Disk Queue Length 18 15.2733 - - -

Network Sent Bytes 33,759,377 25,898,157 3,599,843,808 91.05
 3,953,833,288

Network Received Bytes 3,275,002 2,510,564 353,989,479 8.95
Table 4 – Performance statistics during the imaging restoration with sixty models

Table 4 represents the data from a ten-minute period during active download of the system image

from the file server to the workstation disk, whereas Table 3 represents the data from a ten-

34

minute period containing the entire test. Recall that the XP restoration test with sixty models

took less than ten minutes in its entirety. Therefore, just the relevant data for the XP restoration

test from the period where the file server had disk activity, 0:57 – 4:13, is of interest. The

following two figures, Figure 18 and Figure 19, show, in line charts, the disk statistics for file

server during the XP restoration and imaging restoration experiments, respectively.

Figure 18 – Disk throughput during XP restoration with sixty models

Figure 19 – Disk throughput during imaging restoration with sixty models

It is easy to categorize three stages of the XP restoration experiment when the throughput is

represented in this fashion. The first minute, the workstations are powering on. For the four

minutes where disk reads are apparent, the workstations copy linked clones to their local disk.

Finally, the last half of the chart shows no activity – there is no interaction with the file server

once the workstation caches its linked clone. The charted imaging throughput statistics shows a

consistent amount of disk activity on the file server during the entire ten-minute gathering

period. Further, one can also see that the disk does not deliver as high of a throughput during the

imaging restoration as it does in the XP restoration.

Since linked clones are, by definition, much smaller than full system images, the amount of

unique, yet similar, data transferred during the imaging restoration experiment considerably

larger. The following two figures, Figure 20 and Figure 21, show the sizes of eighty linked

clones and eighty Ghost images, respectively. Note that in this instance, each linked clone is

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

3
0

2

3
0

9

3
1

6

3
2

3

3
3

0

3
3

7

3
4

4

3
5

1

3
5

8

3
6

5

3
7

2

3
7

9

3
8

6

3
9

3

4
0

0

4
0

7

4
1

4

4
2

1

4
2

8

4
3

5

4
4

2

4
4

9

4
5

6

4
6

3

4
7

0

4
7

7

4
8

4

4
9

1

4
9

8

5
0

5

5
1

2

5
1

9

5
2

6

5
3

3

5
4

0

5
4

7

5
5

4

5
6

1

5
6

8

5
7

5

5
8

2

5
8

9

5
9

6

Th
ro

u
gh

p
u

t
(B

yt
e

s)

Time (s)

Physical Disk Throughput

\\ZORBA\PhysicalDisk(2 E: I:)\Disk Read Bytes/sec \\ZORBA\PhysicalDisk(2 E: I:)\Disk Write Bytes/sec

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

3
0

2

3
0

9

3
1

6

3
2

3

3
3

0

3
3

7

3
4

4

3
5

1

3
5

8

3
6

5

3
7

2

3
7

9

3
8

6

3
9

3

4
0

0

4
0

7

4
1

4

4
2

1

4
2

8

4
3

5

4
4

2

4
4

9

4
5

6

4
6

3

4
7

0

4
7

7

4
8

4

4
9

1

4
9

8

5
0

5

5
1

2

5
1

9

5
2

6

5
3

3

5
4

0

5
4

7

5
5

4

5
6

1

5
6

8

5
7

5

5
8

2

5
8

9

5
9

6

Th
ro

u
gh

p
u

t
(B

yt
e

s)

Time (s)

Physical Disk Throughput

\\ZORBA\PhysicalDisk(2 E: I:)\Disk Read Bytes/sec \\ZORBA\PhysicalDisk(2 E: I:)\Disk Write Bytes/sec

35

approximately 0.091GB (93MB) versus the 3GB of a Ghost image. Recall that these models are

only slightly modified from the model template – modifications consist of installing scripts to

automate the test. The differential nature of linked clones is the contributor to the stark size

difference in these models.

Figure 20 – Size of eighty distinct linked clones

Figure 21 – Size of eighty distinct Ghost image

Therefore, by using cache-and-update differential virtualization, less time is required for the

model restoration phase. Further, given an environment comparable to the sampled

environment, a cache-and-update restoration and archival approach consistently yields high

throughput as the number of models increases. In restoration, when caching is occurring, the

disk throughput is characterized by nearly all read operations.

4.2 Direct Modification Characterization

Firstly, the direct modification approach to restoration in this experiment uses the same

experimental design from section 3.3. In this instance, however, only eighteen models reported

in the ten minutes, with an average restoration time of approximately 371 seconds (this data is in

the Restoration Result Database in appendix 7.1 on page 44 as diffvirt-vista,70-17). After ten

minutes, the usability of the ―operational‖ models was very low – one could not even click a

button inside the model because the virtual mouse would not respond. Since the high-level

requirement of usability did not exist, perhaps low-level performance measurements reveal a

cause for low usability. The performance data gathered for a ten-minute period during a Vista

restoration test with sixty modeled systems using the direct modification approach are

represented in Table 5.

36

Item (per sec) MAX AVG TOTAL % SUM

Disk Reads 197 75 45,151 43.97
 102,678

Disk Writes 139 96 57,527 56.03

Disk Read Bytes 3,559,645 1,043,720 625,188,450 49.86
 1,253,883,296

Disk Write Bytes 2,481,341 1,049,574 628,694,846 50.14

Disk Queue Length 18 10.2300

Network Sent Bytes 3,066,858 1,552,146 215,748,251 66.48
 324,536,118

Network Received Bytes 1,351,262 771,545 108,787,866 33.52
Table 5 – Performance statistics during the direct modification restoration with sixty models

The sum of disk throughput, at approximately 1.2 billion bytes, for the ten-minute period

described in Table 5 is much lower than the sum of the disk throughput, at approximately 6

billion bytes, in the XP cached restoration approach (see Table 3, page 33). But, why? One

possibility is that the file server cannot handle reading and writing operations in this capacity

since the direct modification approach, in this capacity, has a read-to-write ratio of nearly one,

whereas in the XP cached restoration approach it was nearly 100 (see Table 3, page 33).

Another reason is that maybe the file server hardware cannot handle writing in this capacity.

Figure 22, below, helps us to compare the read versus write operation throughput during the ten-

minute direct modification test with sixty models by showing the percentage of disk reads or

writes per second. The bottom area (blue) represents the read bytes per second while the top area

(red) represents the write bytes per second. One can loosely see that more the linked clones read

more bytes in the beginning of the ten-minute period whereas, in the end, they wrote more bytes.

Figure 22 – Disk throughput during direct modification restoration with sixty models

Thus, one might gather that while read throughput exceeds the write throughput, linked clones

more easily operate directly from the file server. Yet, when the write throughput exceeds the

read throughput, the total disk throughput decreases causing linked clone usability and operation

to diminish. However, it is likely that this analysis is sample-specific. One cannot easily

extrapolate this characteristic to other storage systems without similar testing utilizing the other

hardware.

0%

20%

40%

60%

80%

100%

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

2
0

4

2
1

1

2
1

8

2
2

5

2
3

2

2
3

9

2
4

6

2
5

3

2
6

0

2
6

7

2
7

4

2
8

1

2
8

8

2
9

5

3
0

2

3
0

9

3
1

6

3
2

3

3
3

0

3
3

7

3
4

4

3
5

1

3
5

8

3
6

5

3
7

2

3
7

9

3
8

6

3
9

3

4
0

0

4
0

7

4
1

4

4
2

1

4
2

8

4
3

5

4
4

2

4
4

9

4
5

6

4
6

3

4
7

0

4
7

7

4
8

4

4
9

1

4
9

8

5
0

5

5
1

2

5
1

9

5
2

6

5
3

3

5
4

0

5
4

7

5
5

4

5
6

1

5
6

8

5
7

5

5
8

2

5
8

9

5
9

6

Th
ro

u
gh

p
u

t
(B

yt
e

s)

Time (s)

Physical Disk Throughput

\\ZORBA\PhysicalDisk(2 E: I:)\Disk Read Bytes/sec \\ZORBA\PhysicalDisk(2 E: I:)\Disk Write Bytes/sec

37

In an effort to understand requirements that a file server needs to meet in order to enable direct

modifications of linked clones located on the file server, the following three sections detail the

disk throughput from the file server during three distinct linked clone operations.

A linked clone begins as a few files whose combined size is less than one megabyte, because,

initially, a linked clone is just a set of pointers to the template virtual machine. The following

graphs, Figure 23 and Figure 24, show the disk operations at the file server when starting a

linked clone for the first time from an XP and Vista workstation, respectively.

Figure 23 – Disk operations during first launch of model using XP direct modification

0

20

40

60

80

100

120

140

160

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

O
p

e
ra

ti
o

n
s

Time (s)

Physical Disk Operations

\\JABBA\PhysicalDisk(2 E: I:)\Disk Reads/sec \\JABBA\PhysicalDisk(2 E: I:)\Disk Writes/sec

38

Figure 24 – Disk operations during first launch of model using Vista direct modification

The table below, Table 6, shows the read-to-write operations ratio for an initial launch of a

linked clone directly from a file server using both XP and Vista as workstation operating

systems.

Workstation OS Reads Writes Read % Write %

XP 28 4185 0.7 99.3

Vista 31 1192 2.6 97.4
Table 6 – Disk operations from server during initial launch of one model

Given these two data representations, one can understand that the initial execution of a linked

clone from a networked file server primarily consists of write operations.

For this next experiment, a Windows Server 2003 linked clone was prepared by promoting it to a

domain controller in a new domain. The modified Windows Server linked clone was then

restored using the direct modification approach. The following graphs, Figure 25 and Figure 26,

show the file server disk throughput when starting the modified linked clone from XP and Vista

workstations, respectively.

0

20

40

60

80

100

120

140

160

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

1
0

5

1
0

9

O
p

e
ra

ti
o

n
s

Time (s)

Physical Disk Operations

\\JABBA\PhysicalDisk(2 E: I:)\Disk Reads/sec \\JABBA\PhysicalDisk(2 E: I:)\Disk Writes/sec

39

Figure 25 – Disk operations during launch of modified model using XP direct modification

Figure 26 – Disk operations during launch of modified model using Vista direct modification

In both graphs, the linked clone starts at approximately twenty seconds (near the first spike).

The top area (red) represents writes per second while the bottom area (blue) represents reads per

second. Both graphs appear to have similar trends of throughput with respect to time. Both

graphs appear to have more reads than writes early on, however this behavior seems to switch

towards the end of the launch. The table below, Table 7, illustrates the disk operations for the

launch of the modified linked clone, a period that was approximately 140 seconds in both cases.

Workstation OS Reads Writes Read % Write %

XP 3,940 3,804 50.88 49.12

Vista 7,699 4,598 62.61 37.39
Table 7 – Disk operations from server during launch of one modified model

Given these two data representations, one can understand that the launch of a previously

modified linked clone from a networked file server consists heavily of both read and write

operations.

In the final direct modification experiment, statistics were gathered while linked clone was being

shutdown. The following representations, Figure 27, Figure 28, and Table 7, illustrate disk

throughput on the file server during the shutdown of the linked clone. In both figures, the

bottom area (blue) represents read operations per second while the top area (red) represents write

operations per second. The figures show similar trends with low amount of operations for the

0

20

40

60

80

100

120

140

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101103105107109111113115117119121123125127129131133135137139141

O
p

e
ra

ti
o

n
s

Time (s)

Physical Disk Operations

\\ZORBA\PhysicalDisk(2 E: I:)\Disk Reads/sec \\ZORBA\PhysicalDisk(2 E: I:)\Disk Writes/sec

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101103105107109111113115117119121123125127129131133135137139141

O
p

e
ra

ti
o

n
s

Time (s)

Physical Disk Operations

\\ZORBA\PhysicalDisk(2 E: I:)\Disk Reads/sec \\ZORBA\PhysicalDisk(2 E: I:)\Disk Writes/sec

40

first half of shutdown followed by a larger amount of operations toward the end. Further, the

majority of the read operations occur in the second half of shutdown.

Figure 27 – Disk operations during shutdown of modified model using XP direct modification

Figure 28 – Disk operations during shutdown of modified model using Vista direct modification

Workstation OS Reads Writes Read % Write %

XP 3,037 6,411 32.14 67.86

Vista 3,664 6,831 34.91 65.09
Table 8 – Disk operations during shutdown of one modified model

Given these representations, one can see that the shutdown of a linked clone on a networked file

share consists of both read and write operations; however, more writes than reads comprise the

shutdown process.

It was determined that by using a direct modification restoration and archival approach with an

increasing number of models, throughput is greatly reduced. When one or many linked clones

are restored directly, disk operations consist of a nearly equal amount of reads and writes. Thus,

an argument could be made that when both types of operations occur simultaneously, a piece of

hardware in the IO path is not capable of delivering the required throughput. In the instance of

the researched environment, a single device type was not determined to be the root cause. To

determine how network bandwidth on the file server affects restoration time, further experiments

could decrease the allotted bandwidth of the network adapter on the file server and observe re-

perform the restoration experiment. In the experiments, the total file size of a linked clone was

at most 100MB. Therefore, the largest file in a linked clone file set is equal to or smaller than

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101103105107109111113115117119121123125127129131133135137139141

O
p

e
ra

ti
o

n
s

Time (s)

Physical Disk Operations

\\ZORBA\PhysicalDisk(2 E: I:)\Disk Reads/sec \\ZORBA\PhysicalDisk(2 E: I:)\Disk Writes/sec

0

50

100

150

200

250

300

350

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99 101103105107109111113115117119121123125127129131133135137139141

O
p

e
ra

ti
o

n
s

Time (s)

Physical Disk Operations

\\ZORBA\PhysicalDisk(2 E: I:)\Disk Reads/sec \\ZORBA\PhysicalDisk(2 E: I:)\Disk Writes/sec

41

100MB. Whereas, the traditional Ghost image files were split into a 2GB file and a 1GB file.

Based on the graphs in section 4.1, the average operation is 7MB larger while caching linked

clones than imaging Ghost images. Thus, overall, it appears that throughput, and therefore

restoration and archival time, depends on operational characteristics (read versus write) and

operation size. The cache-and-update approach offers a far more efficient and faster approach to

archiving and restoring user-specific models.

4.3 Workstation Capabilities

The sampled workstations had no issues executing three linked clones, with the specified virtual

memory allocation. All linked clones as well as the host operating system were responsive.

Neither XP nor Vista appeared to render a more or less responsive model. Based upon the

capabilities of the sampled workstations, one could assume that other workstations with similar

computing resources could execute the same number of workstations. Finally, the operating

capacity of the workstations was not sought but rather a capability was determined; the

workstations could likely handle executing more linked clones.

The workstations, with 3GB of memory and a 3.4 GHz processor, in the sampled environment

were easily able to operate multiple (3) virtual machines simultaneously. It is believed that

workstations with similar hardware will have similar capabilities. Since, in this environment,

users control their virtual machines, the exercise of resource allocation between the workstation

and the virtual machines it operates is a user responsibility. Therefore, users must learn to gauge

virtual machine resource allocation based on total available resources. It appears that the

recommended operating system specific virtual memory allocation by VMware in the

Workstation product lends usable virtual environments. Users must pay attention to the

aggregate memory of all operating virtual machines to ensure that the expected resource use does

not exceed that provided by the workstation. Thus, in the researched environment, users get

more operational benefits from individual workstations. This translates to the possibility of

decreased workstation cost or increased lab utilization – both of which benefit the organization.

42

5 Conclusions

Since modeling is a pervasive scientific query and this research presents a usable and scalable

modeling environment, this research is important. The problem of providing a manageable,

usable, and scalable modeling environment can be solved by using an implementation of the

researched environment. Organizations employing system engineers such as software

developers, operating system programmers, system administrators, forensic analysts, malware

researchers, students, and industry trainees could benefit from the new environment. The new

environment satisfies basic modeling requirements by using a virtualization platform where users

can model entire systems with benefits like model snapshots and modularity. The new

environment is manageable, in the sample environment, because there are processes and methods

to setup and maintain the infrastructure, deploy workstations, create templates and issue template

refreshes. Further, through automation capabilities, the cost for management decreases as

automation will reduce human-error and the time required for each task. It is clear that the new

environment is a further scalable approach to system modeling than the traditional approaches

based on the results from the restoration time experiment. Since multiple linked clones can

operate per workstation, resource utilization of individual workstations is increased, each user

requires fewer workstations, and, therefore, the overall modeling environment efficiency is

increased. Since template-based virtual machines are used, the storage and network requirement

per model is decreased which results in less time to preserve models and a higher rate of use of

workstations. If an organization operates many powerful workstations, this modeling approach

will decrease the time required for user model preservation and decrease hardware dependency

while providing large-scale system modeling.

43

6 Future Work

In theory, if users were not required to cache their differential virtual machine prior to executing

it, even less time is required for restoration and preservation. In future experiments, attention

should be focused to understand the requirements for simultaneous direct modification of many

linked clones. If the new environment were componentized into storage, network, and

workstation items, one could posit that improving the capabilities of a component item might

increase throughput during direct modification. Since more workstations means more models

are capable of running, the number of workstations can cause poor throughput. However,

increasing the capabilities of a workstation will not increase throughput. Therefore, it is

reasonable to assume that the problem lies with either the network or the storage solution.

Therefore, one could use multiple storage solutions or networks in large-scale direct

modification experiments and observing which configuration yields the most usable models.

Further, individual hardware components could be configured differently so they are tailored to

linked clone behaviors. For example, since it is understood that the actual operation of a linked

clone requires nearly equal read and write operations, a disk setup requiring less physical

operations per logical operation might prove beneficial; that is to say, a RAID stripped and

mirrored (RAID 0+1 or RAID 1+0) requires less physical disk operations per logical operation.

In addition to simply understanding direct modification requirements, vendors like VMware are

constantly releasing new products that enable virtualization and virtualization management. For

example, products like VMware ACE (VMware, Inc. 2008c) or Offline VDI (Lowe 2008) might

enhance the ability to control virtual machines across many workstations. VMware ACE enables

administrators to expire virtual machines at a specified date as well as prevent the virtual

machine from operating outside of their organization. Recently introduced at VMworld 2008,

the concept of Offline VDI enables users of VMware Virtual Desktop Infrastructure to ―to check

out [virtual machines] and run them while disconnected from the [VMware Virtual

Infrastructure] environment‖ (Lowe 2008).

44

7 Appendices

7.1 Restoration Result Database

traditional,60,maul101,8935.3245675

traditional,60,maul102,8839.7470542

traditional,60,maul103,8659.2169596

traditional,60,maul104,8885.3405124

traditional,60,maul11,8969.2774752

traditional,60,maul12,8797.3410756

traditional,60,maul13,8689.7636391

traditional,60,maul14,8575.9674924

traditional,60,maul21,8722.3571805

traditional,60,maul22,8713.84161

traditional,60,maul24,8676.7637223

traditional,60,maul31,8891.9342202

traditional,60,maul32,8926.6371231

traditional,60,maul33,8876.9811909

traditional,60,maul34,8938.1682993

traditional,60,maul41,8881.4186625

traditional,60,maul42,8898.4810533

traditional,60,maul43,8946.6369951

traditional,60,maul44,9031.8708246

traditional,60,maul61,8971.3868367

traditional,60,maul63,8867.5437513

traditional,60,maul64,8819.4971838

traditional,60,maul71,8737.8727062

traditional,60,maul72,8883.7623975

traditional,60,maul73,8632.2483822

traditional,60,maul74,8553.7332597

traditional,60,maul81,8537.7177372

traditional,60,maul82,8480.5306032

traditional,60,maul83,8528.4052968

traditional,60,maul84,8903.8716438

traditional,60,maul92,8896.2466926

traditional,60,maul93,8700.6073197

traditional,60,maul94,8505.8898159

traditional,60,sidious102,8668.1387775

traditional,60,sidious103,8610.6860202

traditional,60,sidious13,8694.9511059

traditional,60,sidious21,8667.8262795

traditional,60,sidious22,8788.9661292

traditional,60,sidious23,8764.5756603

traditional,60,sidious33,8573.3893839

traditional,60,sidious34,8719.1853258

traditional,60,sidious41,8688.7323957

traditional,60,sidious42,8892.3717174

traditional,60,sidious43,8894.1685809

traditional,60,sidious51,8892.8560893

traditional,60,sidious52,8836.1689521

traditional,60,sidious53,8940.7932825

traditional,60,sidious61,8939.8557885

traditional,60,sidious63,8923.8871407

traditional,60,sidious64,8902.8716502

45

traditional,60,sidious72,8866.2625095

traditional,60,sidious74,8733.997731

traditional,60,sidious82,8754.8882223

traditional,60,sidious83,8820.403428

traditional,60,sidious84,8731.8883695

traditional,60,sidious92,8677.9512147

traditional,60,sidious93,8872.6218438

traditional,30,maul11,4566.377025

traditional,30,maul12,4450.8465144

traditional,30,maul13,4412.2061367

traditional,30,maul14,4202.8793514

traditional,30,maul21,3669.8671377

traditional,30,maul22,4331.1285306

traditional,30,maul24,4005.1774917

traditional,30,maul31,4150.1921886

traditional,30,maul32,3965.8964931

traditional,30,maul33,3953.1934494

traditional,30,maul34,4060.3490136

traditional,30,maul41,4423.6904382

traditional,30,maul42,4453.1433747

traditional,30,maul43,4157.4577671

traditional,30,sidious103,4480.2525762

traditional,30,sidious21,4164.4264725

traditional,30,sidious22,3900.8656593

traditional,30,sidious23,3883.6313946

traditional,30,sidious31,4004.7243696

traditional,30,sidious34,4278.722616

traditional,30,sidious41,4438.5028434

traditional,30,sidious42,3793.569471

traditional,30,sidious43,4370.2220304

traditional,30,sidious51,4445.4090492

traditional,30,sidious52,4250.4259221

traditional,30,sidious53,4389.2687835

traditional,30,sidious84,4478.4244629

traditional,30,sidious92,4510.8773802

traditional,30,sidious93,4502.9243061

traditional,1,maul11,1294.0385931

diffvirt-vista,70-17,maul101,479.5376677

diffvirt-vista,70-17,maul103,240.2610119

diffvirt-vista,70-17,maul11,242.8859615

diffvirt-vista,70-17,maul12,242.0891018

diffvirt-vista,70-17,maul13,149.4033814

diffvirt-vista,70-17,maul14,243.9796905

diffvirt-vista,70-17,maul21,155.6532614

diffvirt-vista,70-17,maul22,554.1612349

diffvirt-vista,70-17,maul24,369.2272857

diffvirt-vista,70-17,maul31,322.1656893

diffvirt-vista,70-17,maul32,353.3994646

diffvirt-vista,70-17,maul33,371.3834943

diffvirt-vista,70-17,maul34,416.3045068

diffvirt-vista,70-17,maul64,525.8024044

diffvirt-vista,70-17,maul71,584.5512764

diffvirt-vista,70-17,maul82,377.7739966

diffvirt-vista,70-17,maul94,535.2865973

diffvirt-vista,70-17,sidious101,522.8493361

diffvirt-vista,60,maul101,273.5416229

diffvirt-vista,60,maul103,272.9010102

46

diffvirt-vista,60,maul14,281.4945952

diffvirt-vista,60,maul21,247.4171245

diffvirt-vista,60,maul22,279.2602631

diffvirt-vista,60,maul31,273.3228771

diffvirt-vista,60,maul34,274.6978507

diffvirt-vista,60,maul41,276.9165581

diffvirt-vista,60,maul61,268.1979755

diffvirt-vista,60,maul63,271.7291577

diffvirt-vista,60,maul64,265.3542801

diffvirt-vista,60,maul71,264.4011734

diffvirt-vista,60,maul73,257.7606759

diffvirt-vista,60,maul81,259.6043905

diffvirt-vista,60,maul83,257.4169325

diffvirt-vista,60,maul92,255.0888522

diffvirt-vista,60,sidious104,343.587153

diffvirt-vista,60,sidious11,331.2905141

diffvirt-vista,60,sidious12,290.1975531

diffvirt-vista,60,sidious21,257.963797

diffvirt-vista,60,sidious22,256.6356975

diffvirt-vista,60,sidious23,253.12014

diffvirt-vista,60,sidious32,309.9159245

diffvirt-vista,60,sidious33,311.7283897

diffvirt-vista,60,sidious41,319.6032385

diffvirt-vista,60,sidious61,323.6500358

diffvirt-vista,60,sidious63,322.9312996

diffvirt-vista,60,sidious64,323.118796

diffvirt-vista,60,sidious74,292.5568828

diffvirt-vista,60,sidious81,336.2591687

diffvirt-vista,60,sidious84,325.7906197

diffvirt-vista,30,maul101,231.5424293

diffvirt-vista,30,maul13,187.3557777

diffvirt-vista,30,maul14,220.6832628

diffvirt-vista,30,maul21,186.2151746

diffvirt-vista,30,maul22,214.8240003

diffvirt-vista,30,maul24,234.6986187

diffvirt-vista,30,maul34,229.1362255

diffvirt-vista,30,maul41,222.0582364

diffvirt-vista,30,maul43,224.1206968

diffvirt-vista,30,maul64,226.0581596

diffvirt-vista,30,maul71,226.7612711

diffvirt-vista,30,maul72,226.9800169

diffvirt-vista,30,maul73,226.2769054

diffvirt-vista,30,maul81,232.9799017

diffvirt-vista,30,maul82,193.6994059

diffvirt-vista,30,maul84,239.0735347

diffvirt-vista,30,maul94,197.6837044

diffvirt-vista,30,sidious102,212.4021718

diffvirt-vista,30,sidious103,248.1983595

diffvirt-vista,30,sidious104,240.4328836

diffvirt-vista,1,maul11,288.5100855

diffvirt-xp,60,maul101,363.0479442

diffvirt-xp,60,maul102,244.1140632

diffvirt-xp,60,maul103,336.8767392

diffvirt-xp,60,maul104,350.2670214

diffvirt-xp,60,maul11,201.7253373

diffvirt-xp,60,maul13,192.9288564

diffvirt-xp,60,maul14,337.9860858

47

diffvirt-xp,60,maul21,256.3478901

diffvirt-xp,60,maul22,293.8465908

diffvirt-xp,60,maul31,359.0167974

diffvirt-xp,60,maul32,187.2416112

diffvirt-xp,60,maul34,349.1732994

diffvirt-xp,60,maul41,262.4413671

diffvirt-xp,60,maul42,241.7704182

diffvirt-xp,60,maul43,318.3615882

diffvirt-xp,60,maul61,267.4255188

diffvirt-xp,60,maul62,169.5392793

diffvirt-xp,60,maul63,351.1107498

diffvirt-xp,60,maul64,316.299141

diffvirt-xp,60,maul71,338.0485842

diffvirt-xp,60,maul72,343.4234466

diffvirt-xp,60,maul73,358.0324476

diffvirt-xp,60,maul74,342.0484818

diffvirt-xp,60,maul81,340.6110186

diffvirt-xp,60,maul82,284.6437014

diffvirt-xp,60,maul83,231.0521484

diffvirt-xp,60,maul84,356.9855994

diffvirt-xp,60,maul92,318.7365786

diffvirt-xp,60,maul93,359.3136648

diffvirt-xp,60,maul94,352.4857146

diffvirt-xp,60,sidious102,355.1418966

diffvirt-xp,60,sidious103,365.751

diffvirt-xp,60,sidious104,328.9863162

diffvirt-xp,60,sidious11,357.5637096

diffvirt-xp,60,sidious12,354.9856506

diffvirt-xp,60,sidious13,352.079475

diffvirt-xp,60,sidious14,350.517015

diffvirt-xp,60,sidious21,316.2522672

diffvirt-xp,60,sidious22,331.767495

diffvirt-xp,60,sidious23,335.673645

diffvirt-xp,60,sidious31,270.2378928

diffvirt-xp,60,sidious32,365.6885016

diffvirt-xp,60,sidious33,356.7356058

diffvirt-xp,60,sidious34,352.2044718

diffvirt-xp,60,sidious41,345.1421526

diffvirt-xp,60,sidious43,339.8297886

diffvirt-xp,60,sidious51,346.5171174

diffvirt-xp,60,sidious52,343.329699

diffvirt-xp,60,sidious53,345.6421398

diffvirt-xp,60,sidious54,332.9549646

diffvirt-xp,60,sidious61,356.4856122

diffvirt-xp,60,sidious63,365.8603722

diffvirt-xp,60,sidious64,345.3921462

diffvirt-xp,60,sidious72,329.267559

diffvirt-xp,60,sidious73,353.25132

diffvirt-xp,60,sidious74,343.564068

diffvirt-xp,60,sidious81,348.8139336

diffvirt-xp,60,sidious82,343.7671878

diffvirt-xp,60,sidious83,328.3144584

diffvirt-xp,60,sidious84,351.766983

diffvirt-xp,30,maul101,196.3043926

diffvirt-xp,30,maul102,175.7581751

diffvirt-xp,30,maul103,195.1325551

diffvirt-xp,30,maul104,195.3669226

48

diffvirt-xp,30,maul71,205.9603336

diffvirt-xp,30,maul72,207.2102936

diffvirt-xp,30,maul73,200.6792526

diffvirt-xp,30,maul74,215.8975156

diffvirt-xp,30,maul81,186.7421986

diffvirt-xp,30,maul82,191.6014181

diffvirt-xp,30,maul83,207.4915346

diffvirt-xp,30,maul84,216.3193771

diffvirt-xp,30,maul92,208.4602536

diffvirt-xp,30,maul93,208.9758621

diffvirt-xp,30,maul94,203.4604136

diffvirt-xp,30,sidious11,210.8508021

diffvirt-xp,30,sidious12,213.3819711

diffvirt-xp,30,sidious13,220.3348736

diffvirt-xp,30,sidious14,217.5380881

diffvirt-xp,30,sidious21,221.8504501

diffvirt-xp,30,sidious22,213.5538406

diffvirt-xp,30,sidious23,229.3502101

diffvirt-xp,30,sidious31,201.3979796

diffvirt-xp,30,sidious32,223.2566551

diffvirt-xp,30,sidious33,213.7725836

diffvirt-xp,30,sidious34,197.9605896

diffvirt-xp,30,sidious81,229.7251981

diffvirt-xp,30,sidious82,225.8034486

diffvirt-xp,30,sidious83,206.6321871

diffvirt-xp,30,sidious84,226.5690491

diffvirt-xp,1,maul102,190.1838484

7.2 diffVirtResult.ps1

diffVirtResult.ps1

written in PowerShell 1.0

script maps a network share based on its IP address and writes a file to

the share

#this script is

#-set to execute on startup

#-used for automating a differential virtualization restoration experiment

#-written in PowerShell

#-written by Jason Koppe

#identify imaging subnets

10.200.251.0/24 is maul

10.200.250.0/24 is sidious

$names = @{"251" = "maul"; "250" = "sidious"}

#select and split the output of ipconfig to get the imaging NIC ip address

$ip=(ipconfig | select-string "10.200.25" | select-string

"IP").tostring().split(":")[1]

49

#third octet of the IP address is side-specific

$subnet=$ip.split(".")[2]

#fourth octet of the IP address is machine-specific

$node=$ip.split(".")[3]

#quick lookup to the hash

$name=$names[$subnet].tostring()

$name+=$node

#copy the linked clone

del c:\users\$name\desktop* -recurse -force

robocopy z:\restoration c:\users\$name\desktop\

#start the linked clone and start a script in the linked

#clone based on the host name

& 'C:\Program Files\VMware\VMware Workstation\vmrun.exe' start

"c:\users\$name\desktop\Clone of Restoration.vmx"

& 'C:\Program Files\VMware\VMware Workstation\vmrun.exe' -gu administrator -

gp netsys runprograminguest "c:\users\$name\desktop\Clone of Restoration.vmx"

c:\windows\system32\windowspowershell\v1.0\powershell.exe "c:\koppe.ps1

$name"

7.3 batchanalyze.ps1

#batchanalyze.ps1

#written in Windows PowerShell 1.0

#Given an input file of format:

testname,testsize,workstationname,restorationtime

#Output analysis statistics for all test types at each heat size

#data analysis types

$types = "avg","min","max"

#set default analysis type to average

$type = $types[0]

#set default database file name

$db = "s.csv"

#if there are command line arguments, use them to set db and type

if ($args.count -ge 1) {

 $db = $args[0]

}

if ($args.count -eq 2) {

 $type = $args[1]

}

#test names

$tests = "traditional","diffvirt-xp","diffvirt-vista"

#test sizes

50

$sizes = 1,30,60

#for each test type

for($t=0;$t -lt $tests.length;$t++){

 $testline = ""

 #for each test size

 for($s=0;$s -lt $sizes.length;$s++) {

 $val = 0

 $min = 999999999999999999999

 $max = 0

 $sum = 0

 $count = 0

 $name=$tests[$t]

 $size=$sizes[$s]

 #for each line in the database, split on comma and update sum,

min, max, count

 gc $db | foreach {

 $line = $_.split(",")

 if (($line[0] -eq $name) -and ($line[1] -eq $size)) {

 $sum+=$line[3]

 if ($line[3] -gt $max) { $max = $line[3] }

 if ($line[3] -lt $min) { $min = $line[3] }

 $count++

 }

 }

 #calculate average

 if ($count -eq 0) { $avg = 0 } else { $avg = $sum/$count }

 #expectations of count met?

 if ($count -ne $size) { "ERROR: Number of records ($count)

doesn't match inputted test size ($size)" }

 switch ($type) {

 'avg' { $testline+=[math]::round($avg,3) }

 'min' { $testline+=[math]::round($min,3) }

 'max' { $testline+=[math]::round($max,3) }

 }

 if ($s -ne ($sizes.length-1)) { $testline+="," }

 }

 #write output

 Write-Host $testline

}

7.4 starttest.ps1

#restoration test start script

#Written in PowerShell 1.0

#the purpose of this script is to record the time on the server at the

51

#start of a test and generate a record for each workstation at the end of a

#test

#get testname and size

$name = Read-Host "Enter test name and size (Ex: Traditional,30)"

#Get the date

$date = get-date

#Pause until the end of the test

Read-Host "Begin the test now & hit enter when the test is done..."

#for each folder in the directory, find the result file

#for each result file, calculate the difference between its creation time

#and the start of the test and record this in the database.

#finally rename the result file for longevity

$basefolder = get-item "e:\students\20074\599-01\"

Get-ChildItem $basefolder | foreach-object {

 $path = "$basefolder\$_\result"

 if ((Test-Path -Path $path) -eq $True) {

 $result = get-childitem $path

 $diff = $result.creationTime.subtract($date).totalseconds

 $record = "$name,$_,$diff"

 $record >> restoration.csv

 Rename-Item -Path $path -newname $record

 }

}

7.5 massImage.ps1

massImage.ps1

written in Powershell CTP 2.0

The purpose of this script is to automate configuration of a multicast

transmission and unattended installation of a specific install image on a

specific WDS server. A detailed process overview is given below.

########

#Prerequisites

#-Windows 2008

#-PowerShell CTP 2.0

#-WDSUTIL

#-Administrative shell

#-Domain credentials

########

#Process

#-select wds server

#-select image

#-generate client unattend

#-unique client unattend name

#-store client unattend

#-store boot program

#-set client unattend

52

#-enable n12 as boot program

#-check pre-existing MC sessions

#-create multicast session

#-pause until trigger from input

#-check # of clients connected

#-start multicast

#-revert boot program

#-revert client unattend

########

#Author

#-Jason R Koppe

##########

#Global Variables

$wds

$images

$xmls

$running = "RUNNING"

$stopped = "STOPPED"

$server

$wdsoutput

##########

#Functions

Function Prompt-YesNo ($Caption, $Message,$choices) {

$host.ui.PromptForChoice($caption,$Message,[System.Management.Automation.Host

.ChoiceDescription[]]$choices,0)

}

Function wdsState($s) {

 $state = (sc.exe \\$s query wdsserver | Select-String "STATE")

 if ($state) { $state = $state.tostring().split(":")[1].trim().split("

")[2] }

 if ($state -eq $running) {

 return $running

 }

 return $stopped

}

#########

#Check for prerequisites

Write-Host "Prerequisites"

Write-Host "-------------"

Write-Host "Checking Windows version...`t" -NoNewline

if ((get-wmiobject -class "Win32_OperatingSystem" -namespace "root\CIMV2" -

computername .).name -match "2008") {

 Write-Host "ok" -ForegroundColor "green"

} else {

 Write-Host "failed" -ForegroundColor "red"

 Write-Host "Please run this script on Windows Server 2008" -

ForegroundColor "red"

 exit

}

53

Write-Host "Checking PowerShell version...`t" -NoNewline

if ((get-pssnapin -name Microsoft.Powershell.core).psversion.major -ge 2) {

 Write-Host "ok" -ForegroundColor "green"

} else {

 Write-Host "failed" -ForegroundColor "red"

 Write-Host "Please install PowerShell 2.0 (Select-string -context is

required)" -ForegroundColor "red"

 exit

}

Write-Host "Checking privileges...`t`t" -NoNewline

servermanagercmd > $null 2>$null

if ($lastexitcode -eq 4) {

 Write-Host "ok" -ForegroundColor "green"

} else {

 Write-Host "failed" -ForegroundColor "red"

 Write-Host "Please run this from an Administrative console" -

ForegroundColor "red"

 exit

}

Write-Host "Checking WDS tools...`t`t" -NoNewline

if ((Test-Path C:\Windows\System32\wdsutil.exe) -eq $true) {

 Write-Host "ok" -ForegroundColor "green"

} else {

 Write-Host "failed" -ForegroundColor "red"

 $n = ([System.Management.Automation.Host.ChoiceDescription]"&No")

 $n.helpmessage = "No, don't install WDS tools"

 $Y = ([System.Management.Automation.Host.ChoiceDescription]"&Yes")

 $y.helpmessage = "Yes, install netsh WDS tools"

 $choices = ($Y,$N)

 $ans = $host.ui.PromptForChoice("Install WDS tools","Would you like to

install WDS utilities now?",

 [System.Management.Automation.Host.ChoiceDescription[]]$choices,0)

 if ($ans -eq 0) {

 servermanagercmd -install RSAT-WDS

 }else { exit }

}

############

#Main script

Write-Host "`n`nMulticast Imaging"

Write-Host "-----------------"

if ($args.count -eq 1) {

 Write-Host "Validating input server...`t" -NoNewline

 $s = $args[0]

 wdsutil /get-allimages /server:$s /show:Install /detailed > $null

 if ($lastexitcode -eq 0) {

 $server = $s

54

 Write-Host "ok" -ForegroundColor "green"

 }

 else {

 Write-Host "failed" -ForegroundColor "red"

 }

}

if (-not $server) {

 Write-Host "Finding WDS servers...`t`t" -NoNewline

 $wdsoutput = wdsutil /get-allservers /show:config

 $wdsoutput | select-string "Attempting to contact server" | foreach {

 $wds += ,($_.tostring().split(" ")[4])

 }

 if ($wds.count -gt 0) {

 Write-Host "done" -ForegroundColor "green"

 } else {

 Write-Host "done" -ForegroundColor "red"

 Write-Host "No WDS servers found" -ForegroundColor "red"

 if (${env:userdomain} -eq ${env:computername}) {

 Write-Host "Run this console from a domain admin account" -

ForegroundColor "red"

 }

 Write-Host "Try running the script with the servername as the

parameter" -ForegroundColor "red"

 Write-Host "`tEx: C:\admin\scripts\massImage.ps1 srv1" -

ForegroundColor "red"

 exit

 }

 Write-Host "Checking WDS state...`t`t" -NoNewline

 #add .state to string objects in the wds collection

 for ($i = 0; $i -lt $wds.count; $i++) {

 $state = wdsState $wds[$i]

 $wds[$i] = $wds[$i] | add-member noteproperty state $state -

passthru

 }

 Write-Host "done`n" -ForegroundColor "green"

 #get choice server

 $lc = 0

 while($server.state -ne $running) {

 #print menu on first iteration

 if ($lc -eq 0) {

 write-host "[#] Server"

 write-host "----------"

 for ($i = 0; $i -lt $wds.count; $i++) {

 $w = $wds[$i].tostring().split(".")[0]

 $s = $wds[$i].state

 if ($s -eq $running) { write-host [$i] $w -

ForegroundColor "green" }

 else { write-host [$i] $w }

 }

 }

55

 #print warning after first iteration

 if ($lc -gt 0) { Write-Host "`nNOTE: WDS must be running on the

server.`n" }

 #get input

 $in = read-host "Select a WDS server"

 #validate input

 if (($in -cmatch "^\d+$") -eq $true) {

 $in = [int]$in

 if (($in -ge 0) -and ($in -lt $wds.count)) {

 $server = $wds[$in]

 }

 }

 $lc++

 }

}

#find images on $server

Write-Host "Finding images...`t`t" -NoNewline

$wdsoutput = wdsutil /get-allimages /server:$server /show:Install /detailed

$wdsoutput | select-string "Image name" -context 0,4| foreach-object {

 $name = $_.line.tostring().split(":")[1].trim()

 $group = ($_.context.postcontext | select-string

"group").tostring().split(":")[1].trim()

 $image = $name

 $image = $image | Add-Member noteproperty group $group -PassThru

 $image = $image | Add-Member noteproperty server $server -PassThru

 $images += ,$image

}

Write-Host "ok`n" -ForegroundColor "green"

#get choice image

$simage

$simagegroup

$lc = 0

while(-not $simage) {

 #print menu on first iteration

 if ($lc -eq 0) {

 write-host "[#] Group | Name "

 write-host "--------------------"

 for ($i = 0; $i -lt $images.count; $i++) {

 $n = $images[$i].tostring()

 $g = $images[$i].group

 write-host "[$i] $g | $n"

 }

 }

 #print warning after first iteration

 if ($lc -gt 0) { Write-Host "`nNOTE: Input a valid number" }

56

 #get input

 $in = read-host "`nSelect an image"

 #validate input

 if (($in -cmatch "^\d+$") -eq $true) {

 $in = [int]$in

 if (($in -ge 0) -and ($in -lt $images.count)) {

 $simage = $images[$in]

 $simagegroup = $images[$in].group

 }

 }

 $lc++

}

Write-Host "Generating unattend name...`t" -NoNewline

#find full path for WdsClientUnattend

$reminst = (wdsutil /get-server /show:all /detailed | select-string "REMINST

location").tostring().trim().split(" ")[2]

#unique name for temporary unattend xml

$xfile = "" + (new-object random).next() + ".xml"

$fullname = "$reminst\WdsClientUnattend\$xfile"

#verify unique name for temporary unattend xml

while ((test-path $fullname) -eq $true) {

 $xfile = "" + (new-object random).next() + ".xml"

 $fullname = "$reminst\WdsClientUnattend\$xfile"

}

Write-Host "ok" -ForegroundColor "Green"

Write-Host "Generating unattend file...`t" -NoNewline

#generate temporary unattend xml

set-content $fullname (get-content default.xml | foreach {

 $ng = ">$simagegroup<"

 $_ -replace ">IMAGEGROUP<", $ng } | foreach {

 $_ -replace ">IMAGENAME<", ">$simage<"

})

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

#save boot program

$orig_bootprogram = (wdsutil /get-server /show:all /detailed | select-string

"default boot programs:" -context 0,1 | foreach-object {

 ($_.context.postcontext | select-string

"x86").tostring().trim().split(" ")[3]

})

#save boot program 64

$orig_bootprogram64 = (wdsutil /get-server /show:all /detailed | select-

string "default boot programs:" -context 0,2 | foreach-object {

 ($_.context.postcontext | select-string

"x64").tostring().trim().split(" ")[3]

})

#save client unattend

$orig_clientunattend = (wdsutil /get-server /show:all /detailed | select-

string "WDS unattend files:" -context 0,1 | foreach-object {

 ($_.context.postcontext | select-string

57

"x86").tostring().trim().split(" ")[3]

})

#set new boot program

Write-Host "Setting boot program...`t`t" -NoNewline

wdsutil /set-server /server:$server /bootprogram:boot\x86\pxeboot.n12

/architecture:x86 > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

#set new boot program

Write-Host "Setting boot program...`t`t" -NoNewline

wdsutil /set-server /server:$server /bootprogram:boot\x64\pxeboot.n12

/architecture:x64 > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

Write-Host "Setting unattend file...`t" -NoNewline

#set new unattend file

wdsutil /set-server /server:$server /wdsunattend

/file:WdsClientUnattend\WdsClientUnattend\$xfile /architecture:x86 > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

Write-Host "Checking multicast session...`t" -NoNewline

WDSUTIL /get-MulticastTransmission /Server:$server /Image:$simage

/ImageType:Install /imagegroup:$simagegroup > $null

if ($lastexitcode -eq -1056767648) {

 Write-Host "ok" -ForegroundColor "green"

 #create multicast session

 Write-Host "Creating multicast session...`t" -NoNewline

 WDSUTIL /New-MulticastTransmission /FriendlyName:"WDS SchedCast

Transmission" /Server:$server /Image:$simage /ImageType:Install

/imagegroup:$simagegroup /TransmissionType:ScheduledCast > $null

 if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" }

else { Write-Host "failed" -ForegroundColor "red" }

}else {

 Write-Host "already existed"

 Write-Host "Deleting session...`t`t" -NoNewline

 #delete multicast session

 WDSUTIL /remove-MulticastTransmission /Server:$server /Image:$simage

/ImageType:Install /imagegroup:$simagegroup /force > $null

 if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" }

else { Write-Host "failed" -ForegroundColor "red" }

 Write-Host "Recreating session...`t`t" -NoNewline

 #recreate multicast session

 WDSUTIL /New-MulticastTransmission /FriendlyName:"WDS SchedCast

Transmission" /Server:$server /Image:$simage /ImageType:Install

/imagegroup:$simagegroup /TransmissionType:ScheduledCast > $null

 if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" }

else { Write-Host "failed" -ForegroundColor "red" }

}

#start multicast session

Write-Host "Wait for all clients to join, then press ENTER" -ForegroundColor

"red"

Read-Host

while ((wdsutil /get-multicasttransmission /Server:$server /Image:$simage

/imagetype:install /imagegroup:$simagegroup /show:clients | select-string

58

"Clients Connected").line.split(":")[1].trim() -eq 0) {

 Write-Host "No clients have joined the session" -ForegroundColor "red"

 Write-Host "Wait for all clients to join, then press ENTER" -

ForegroundColor "red"

 Read-Host

}

WDSUTIL /start-MulticastTransmission /Server:$server /Image:$simage

/ImageType:Install /imagegroup:$simagegroup > $null

Write-Host "The clients should now be imaging`n" -ForegroundColor "red"

#########

#Cleanup

Write-Host "Performing cleanup"

Write-Host "------------------"

#tombstone multicast session (don't allow more to join & delete when all

done)

Write-Host "Mark session for deletion...`t" -NoNewline

WDSUTIL /remove-MulticastTransmission /Server:$server /Image:$simage

/ImageType:Install /imagegroup:$simagegroup > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

#reset boot program

Write-Host "Reset boot program...`t`t" -NoNewline

wdsutil /set-server /server:$server /bootprogram:$orig_bootprogram

/architecture:x86 > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

#reset boot program

Write-Host "Reset boot program...`t`t" -NoNewline

wdsutil /set-server /server:$server /bootprogram:$orig_bootprogram64

/architecture:x64 > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

#reset unattend file

Write-Host "Reset unattend...`t`t" -NoNewline

wdsutil /set-server /server:$server /wdsunattend /file:$orig_clientunattend

/architecture:x86 > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

#remove temporary file

Write-Host "Remove unattend file...`t`t" -NoNewline

Del $fullname -Force > $null

if ($lastexitcode -eq 0) { Write-Host "ok" -ForegroundColor "green" } else {

Write-Host "failed" -ForegroundColor "red" }

7.6 default.xml

<?xml version="1.0" encoding="utf-8"?>

<unattend xmlns="urn:schemas-microsoft-com:unattend">

 <settings pass="windowsPE">

59

 <component name="Microsoft-Windows-Setup"

publicKeyToken="31bf3856ad364e35" language="neutral" versionScope="nonSxS"

processorArchitecture="x86">

 <DiskConfiguration>

 <WillShowUI>OnError</WillShowUI>

 <Disk>

 <CreatePartitions>

 <CreatePartition>

 <Order>2</Order>

 <Type>Primary</Type>

 <Extend>true</Extend>

 </CreatePartition>

 <CreatePartition>

 <Order>1</Order>

 <Type>Primary</Type>

 <Size>20000</Size>

 </CreatePartition>

 </CreatePartitions>

 <ModifyPartitions>

 <ModifyPartition>

 <Active>true</Active>

 <Format>NTFS</Format>

 <Label>Public</Label>

 <Letter>P</Letter>

 <Order>2</Order>

 <PartitionID>1</PartitionID>

 </ModifyPartition>

 <ModifyPartition>

 <Active>true</Active>

 <Extend>False</Extend>

 <Format>NTFS</Format>

 <Label>Local Disk</Label>

 <Letter>C</Letter>

 <Order>1</Order>

 <PartitionID>2</PartitionID>

 </ModifyPartition>

 </ModifyPartitions>

 <DiskID>0</DiskID>

 <WillWipeDisk>true</WillWipeDisk>

 </Disk>

 </DiskConfiguration>

 <ImageInstall>

 <OSImage>

 <InstallTo>

 <DiskID>0</DiskID>

 <PartitionID>2</PartitionID>

 </InstallTo>

 <WillShowUI>OnError</WillShowUI>

 </OSImage>

 </ImageInstall>

 <UserData>

 <ProductKey>

 <WillShowUI>OnError</WillShowUI>

 </ProductKey>

 <AcceptEula>true</AcceptEula>

 <FullName>IT</FullName>

 <Organization>RIT</Organization>

60

 </UserData>

 <WindowsDeploymentServices>

 <Login>

 <Credentials>

 <Domain>TESTDOMAIN</Domain>

 <Password>TESTPASSWORD</Password>

 <Username>TESTUSERNAME</Username>

 </Credentials>

 </Login>

 <ImageSelection>

 <InstallImage>

 <ImageGroup>IMAGEGROUP</ImageGroup>

 <ImageName>IMAGENAME</ImageName>

 </InstallImage>

 <InstallTo>

 <DiskID>0</DiskID>

 <PartitionID>2</PartitionID>

 </InstallTo>

 </ImageSelection>

 </WindowsDeploymentServices>

 </component>

 <component name="Microsoft-Windows-International-Core-WinPE"

processorArchitecture="x86" publicKeyToken="31bf3856ad364e35"

language="neutral" versionScope="nonSxS"

xmlns:wcm="http://schemas.microsoft.com/WMIConfig/2002/State"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SetupUILanguage>

 <UILanguage>en-US</UILanguage>

 </SetupUILanguage>

 <InputLocale>en-US</InputLocale>

 <SystemLocale>en-US</SystemLocale>

 <UILanguage>en-US</UILanguage>

 <UserLocale>en-US</UserLocale>

 </component>

 </settings>

 <cpi:offlineImage cpi:source="" xmlns:cpi="urn:schemas-microsoft-com:cpi"

/>

</unattend>

7.7 useradd.pl

#!/usr/bin/perl -w

#Author: Jason Koppe

#Started 11/27/05

#Code Finished 3/12/06

#Comments Finished 3/15/06

#USAGE: perl <path to perl script> <path to ini file>

#Example: perl d:\admin\useradd.pl d:\admin\input\useradd.ini

#Items to add

########

#AD Groups like 071-421-39

61

#Class choices like 421-39

#Class path like \\jabba\students\20071\

#Automatic Date

use Term::ReadKey;

use Config::INI::Simple;

#3/10/06 JK

#Catches CTRL+C

$SIG{INT} = sub { print "\nProgram terminated by CTRL+C!!!\n\n"; exit 5; };

#11/27/05

#Sub taken from dhcp_config.pl written by Suraaj Gaur

#3/10/06 JK Modified

To check for undefined and reask the question

otherwise return chomped input

sub prompt {

 my ($message) = @_;

 print $message;

 my $input = <STDIN>;

 if (!(defined($input))) { print "\n"; prompt($message); }

 chomp($input);

 return $input;

}

#11/27/05

#Sub taken from dhcp_config.pl written by Suraaj Gaur

#Prompts for password, or other sensitive input. Does not echo

#out text typed in

#3/10/06 JK Modified

Not defined, don't chomp

sub passPrompt {

 while (1 eq 1) {

 Term::ReadKey::ReadMode('noecho');

 print "Enter password: ";

 my $input = <STDIN>;

 print "\n";

 print "Enter password again: ";

 my $secinput = <STDIN>;

 if (defined($input)) { chomp($input); }

 if (defined($secinput)) { chomp($secinput); }

 Term::ReadKey::ReadMode(0);

 print "\n";

 if ($input eq $secinput) {

 print "Passwords match\n";

 return $input;

 }

 else {

 print "Passwords do not match, try again\n";

 }

 }

}

#11/27/05 JK

62

#0 - User is enabled

#1 - User is disabled

sub userDisabled {

 if ("@_" eq "") { return 1; }

 my ($user) = @_;

 if (`dsquery user -samid \"$user\" -disabled -o samid` =~ /^$/) {

return 0; }

 else { return 1; }

}

#11/28/05 JK

#0 - User is not created

#1 - User is created

sub userCreated {

 if ("@_" eq "") { return 1; }

 my ($user) = @_;

 if (`dsquery user -samid \"$user\" -o samid 2>&1` =~ /^$/) { return

0; }

 else { return 1; }

}

#3/10/06 JK

#Trims leading and trailing whitespace

sub trim {

 my ($string) = @_;

 $string =~ s/^\s+//;

 $string =~ s/\s+$//;

 return $string;

}

#2/11/06 JK

#0 - Group invalid

#1 - Group valid

#The array @courses is populated earlier from the .ini settings file

sub validCourse {

 my ($course, @courses) = @_;

 foreach(@courses) {

 if ($course eq $_) { return 1; }

 }

 return 0;

}

#3/10/06 JK

#0 - Group doesn't exist

#1 - Group exists

#Checks to see whether the group is created in active directory

sub groupCreated {

 if ("@_" eq "") { return 0; }

 my ($group) = @_;

 if (`dsquery group $group 2>&1` =~ /failed/) { return 0; }

 else { return 1; }

}

#2/11/06 JK

#updated 3/5/06

#0 - Server doesn't exist

#1 - Server exists

#The @servers arrary is populated earlier from the .ini settings file

63

#The input can match any part of the server string from the ini file

sub validServer {

 my ($server, @servers) = @_;

 $server = lc($server);

 my ($s, $i) = 0;

 foreach(@servers) {

 if ($server eq $_) { return $_; }

 if (substr($server,0,1) eq substr($_,0,1)) { return $_; }

 }

 return 0;

}

#2/11/06 JK

#updated 3/5/06

#0 - Day invalid

#1 - Day valid

#Weekdays for now

sub validDay {

 my ($day) = @_;

 $day = lc($day);

 if ($day eq "m" || $day eq "t" || $day eq "w" || $day eq "r" || $day

eq "f") { return 1; }

 else { return 0; }

}

#3/5/06 JK

#1 - Add was successful

#0 - Add failed

#Creates a group in active directory

sub createGroup {

 my ($group) = @_;

 if (`dsadd group $group` =~ /succeeded/) { return 1; }

 else { return 0; }

}

#3/9/06 JK

#Assuming the description of the user is the path where they save files,

#This sub will print the location of a user as well as the directory

#where they save files. The description has been used in the past to store

#the users path, this could be modified to use the homedirectory of the users

#object. The two values are returned in the array

sub printLocDesc {

 if ("@_" eq "") { return; }

 my ($user) = @_;

 my ($dn) = `dsquery user -samid \"$user\"`;

 my (@result) = split(/\n/,`dsget user $dn -desc`);

 print "\tObject Location: $dn";

 print "\tSave Directory:\t$result[1]\n";

 return ($dn,$result[1]);

}

Add course to ini

JK

sub addCourse {

 if (@_ ne 2) {

 return -1;

 }

64

}

#JK

#This sub reads settings from the ini file an also gathers user input. The

info

#collected from the sub include the quarter, course, server and day. If the

ini

#file is provided as the first input parameter, the script will use that

path, otherwise

#it defaults to \\netsys.labs\share\teams\Scripts\Input\useradd.ini because

thats where most of our scripts will

#be located.

sub getSettings {

 my ($server,$quarter,$qtrprompt,$course, $courses, $servers) = "";

 my ($inifile) = new Config::INI::Simple;

 my ($hostname) = `hostname`;

 if ($#ARGV+1 eq 1) { $inifile->read("$ARGV[0]"); }

 else { $inifile-

>read("\\\\netsys.labs\\share\\teams\\scripts\\useradd.ini"); }

 $quarter = "$inifile->{default}->{quarter}";

 if ($hostname =~ /vader/i) {

 $courses = "$inifile->{default}->{syslab}";

 $servers = "$inifile->{default}->{vader}";

 }

 elsif ($hostname =~ /homer/i) {

 $courses = "$inifile->{default}->{projects}";

 $servers = "$inifile->{default}->{homer}";

 }

 elsif ($hostname =~ /wizard/i) {

 $courses = "$inifile->{default}->{netlab}";

 $servers = "$inifile->{default}->{wizard}";

 }

 elsif ($hostname =~ /milton/i) {

 $courses = "$inifile->{default}->{voip}";

 $servers = "$inifile->{default}->{milton}";

 }

 @coursesary = split(",",$courses);

 @serversary = split(",",$servers);

 $course = "";

 $server = 0;

 while (validCourse($course,@coursesary) eq 0) {

 $course = prompt("Please input the course number ($courses): ");

 }

 while ($server eq 0) {

 $server = validServer(lc(prompt("Please input the storage server

($servers): ")),@serversary);

 }

 $coursedn = "\"CN=$quarter-

$course,OU=Groups,OU=Students,DC=netsys,DC=labs\"";

 if (groupCreated($coursedn) eq 0) { createGroup($coursedn); }

 return ($course, $server, $quarter);

}

#3/12/06 JK

65

#1 - Valid name

#2 - Invalid name

#Checks to make sure that the input only contains letters, spaces and dashes

sub validName {

 my ($name) = @_;

 if (!defined($name)) { return 0; }

 if ($name =~ /^[a-zA-Z\-\s]+$/) { return 1; }

 else { return 0; }

}

#JK

#Input lots of information that was collected through the getSettings sub.

#Prompt for a username, first, last password and attempt to create the user.

#The path and the distinguished name of the user will be created after

#the username, first and last names are inputted.

#The username and path are returned.

sub userAdd {

 my ($course, $coursedn, $server, $quarter, $user, $badinput) = @_;

 my ($dn, $pass, $path, $output, $first, $last) = "";

 if ($user eq "") { $user = prompt("Please input a username: "); }

 while (userCreated($user) == 1) {

 print "ERROR: The user $user already exists\n";

 printLocDesc($user);

 print "Please remove the FOLDER and ACCOUNT manually if that is

the desired name\n";

 $user = prompt("Please input another username: ");

 }

 if (!defined($first)) { $first = trim(prompt("Input first name: ")); }

 while (validName($first) eq 0) {

 print "ERROR: Invalid characters found. Only letters, spaces and

dashes are allowed\n";

 $first = trim(prompt("Please try again: "));

 }

 if (!defined($last)) { $last = trim(prompt("Input last name: ")); }

 while (validName($last) eq 0) {

 print "ERROR: Invalid characters found. Only letters, spaces and

dashes are allowed\n";

 $last = trim(prompt("Please try again: "));

 }

 while (groupCreated($coursedn) eq 0) {

 print "ERROR: $coursedn not created.\nManually create this and

add the user.\n";

 }

 if (groupCreated($coursedn) eq 0) { createGroup($coursedn); }

 $path = "\\\\$server\\students\\$quarter\\$course\\$user";

 $dn = "\"CN=$user,OU=Users,OU=Students,DC=netsys,DC=labs\"";

 #This loop will continue to run if the password isnt complex

 #It will return blank values and a 1 if the username is invalid, the

entire function will be run again

 #If everything worked, it returns the user name, path and a 0 so that

the program will continue

 while ($badinput ne 0) {

 $pass = passPrompt();

66

#$output = DSOut(`dsadd user $dn -pwd \"$pass\" -fn \"$first\" -ln \"$last\"

-display \"$first $last\" -desc \"$path\" -memberof

\"CN=Students,OU=Groups,OU=Students,DC=netsys,DC=labs\" $coursedn 2>&1`);

############Alex Modified Here, Don't beat me#################

 $homedrv = "\\\\jabba\\students\\$quarter\\$course\\$user";

 $output = DSOut(`dsadd user $dn -pwd \"$pass\" -fn \"$first\" -ln

\"$last\" -display \"$first $last\" -desc \"$path\" -hmdir \"$homedrv\" -

hmdrv \"S:\" -memberof

\"CN=Students,OU=Groups,OU=Students,DC=netsys,DC=labs\" $coursedn 2>&1`);

 if ($output =~ /complexity/) {

 system("dsrm $dn -noprompt > NUL 2>&1");

 }

 elsif ($output =~ /not a properly formed account name/) {

 return ("","",1);

 }

 elsif ($output =~ /succeeded/) {

 return($user,$path,0);

 }

 }

}

#This will analyze the output of dsadd, dsquery, and dsget type programs.

#If the command fails, the error will be returned. Otherwise, the succeeded

#message will be returned.

sub DSOut {

 chomp(my ($output) = @_);

 my (@result) = split(/:/,$output);

 if ($result[0] =~ /failed/) {

 if (defined($result[2])) { print "ERROR: $result[2]\n"; return

$result[2]; }

 else { print "ERROR: $result[1]\n"; return $result[1]; }

 }

 return $result[0];

}

##THE SCRIPT

##START CALLING ALL THE FUNCTIONS

my ($user, $dn, $path, $quarter, $course, $server, $coursedn, $section,

$sectiondn, $again) = "";

my $keep = 0;#0 = Don't keep/1=keep settings

my $adduser = 1;#1 - Keep adding a user (and get settings if necessary)

my $badinput = 1;#1 - Bad input, to re run the useradd function

while ($adduser eq 1) {

67

 if ($keep eq 0) {

 ($course, $server, $quarter) = getSettings();

 $coursedn = "\"CN=$quarter-

$course,OU=Groups,OU=Students,DC=netsys,DC=labs\"";

 print "Example Student Path:

\\\\$server\\$quarter\\$course\\abc1234\\\n";

 if (prompt("Keep these settings for all users created from now

on? (y/n) [y]: ") =~ /^n/i) {

 $keep = 0;

 }

 else {

 $keep = 1;

 print "\nSETTINGS SAVED!\nQuarter: $quarter\nServer:

$server\nCourse: $course\n\n";

 }

 }

 while ($badinput ne 0) {

 ($user,$path,$badinput) = userAdd($course, $coursedn, $server,

$quarter, $user, $badinput);

 $dn = "\"CN=$user,OU=Users,OU=Students,DC=netsys,DC=labs\"";

 }

 if (userDisabled($user) == 0 && userCreated($user) == 1) {

 #Check if the path exists, if not, try to create it

 #$pathexist values

 #0 - Made successfully

 #1 - Already existed

 #Any other number - Unable to make the path

 if (-d "\"$path\"") {

 $pathexist = 1;

 print "Path existed; the NTFS permissions for the folder

should be examined below.\n";

 system("cacls \"$path\"");

 }

 else { $pathexist = system("mkdir \"$path\""); }

 #Make sure it was created successfully & fix NTFS permissions

 if ($pathexist == 0) {

 print "$path created successfully\n";

 $caclsuser = system("cacls \"$path\" \/E \/G

\"NETSYS\\$user\":C > NUL");

 $caclsgroup = system("cacls \"$path\" \/E \/R \"Users\" >

NUL");

 if ($caclsuser == 0) { print "Change control to \"$path\"

granted to $user\n"; }

 else { print "There was an error giving the user full

access to the users directory\nPlease contact a NetSys Lab Server

Administrator.\n"; }

 if ($caclsgroup == 0) { print "Users permissions revoked

for \"$path\"\n"; }

 else { print "There was an error removing the Users Read

permissions on the users directory\nPlease contact a NetSys Lab Server

Administrator.\n"; }

68

 }

 elsif (! -d $path && $pathexist != 0) {

 print "WARNING: The path could not be created. Program

terminating\nContact a NetSys Lab Server Administrator.\n";

 exit 1;

 }

 }

 #Prompt to see if the script will loop again

 $again = "f";

 while (!($again =~ /^[yn]/i)) {

 $again = prompt("Would you like to add another user? (y/n): ");

 if ($again =~ /^y/i) {

 $badinput = 1;

 $adduser = 1;

 $user = "";

 }

 elsif ($again =~ /^n/i) {

 $adduser = 0;

 $user = "";

 }

 }

}

7.8 startnet.cmd

@echo off

wpeinit

rundll32.exe setupapi,InstallHinfSection DefaultInstall 132 wimfltr.inf

wdsmcast /transfer-file /server:192.168.66.140 /namespace:"wimtest"

/username:koppe\joe /password:asdf1234! /sourcefile:temp.wim

/destinationfile:c:\temp.wim

mkdir c:\mount

imagex /mount c:\temp.wim 1 c:\mount

move c:\mount* c:\templates\

imagex /unmount c:\mount

rmdir c:\mount

69

8 References

Acronis. 2008. Backup software for data backup and disaster recovery in Windows and Linux -

Acronis. http://www.acronis.com/index.asp.

Begnum, K., K. Koymans, A. Krap, and J. Sechrest. 2004. Using Virtual Machines in System

Administration Education. Proceedings of 4 thInternational System Administration and

Network Engineering Conference (SANE04).

Clonezilla. 2008. Clonezilla. http://www.clonezilla.org/.

Corporation, Microsoft. 2008. Updated System Preparation tool for Windows XP Service Pack 2,

Windows Server 2003, and Windows XP Tablet PC Edition 2005.

http://support.microsoft.com/kb/838080.

Gaspar, A., S. Langevin, and W.D. Armitage. 2007. Virtualization Technologies in the

Undergraduate IT Curriculum. IT Professional 9, no. 4: 10-17.

doi:10.1109/MITP.2007.80.

Lei, Kimfong, and Phillip T. Rawles. 2003. Strategic decisions on technology selections for

facilitating a network/systems laboratory using real options \& total cost of ownership

theories. In Proceedings of the 4th conference on Information technology curriculum, 76-

92. Lafayette, Indiana, USA: ACM. doi:10.1145/947121.947139.

http://portal.acm.org.ezproxy.rit.edu/citation.cfm?id=947121.947139&coll=portal&dl=A

CM&CFID=75240542&CFTOKEN=91715286.

Lowe, Scott. 2008. VD2422: Offline VDI - blog.scottlowe.org - The weblog of an IT pro

specializing in virtualization, storage, and servers. September 17.

http://blog.scottlowe.org/2008/09/17/vd2422-offline-vdi/.

Microsoft Corporation. 2005. Netsh commands for DHCP: Dynamic Host Configuration

Protocol (DHCP); Scripting. January 21. http://technet.microsoft.com/en-

us/library/cc787375.aspx.

---. 2007a. Virtual PC 2007 Release Notes.

http://download.microsoft.com/download/4/4/c/44ccd131-67fb-4224-a96e-

193be1765b43/relnotes.htm.

---. 2007b. Download details: Windows PowerShell 2.0 CTP. November 5.

http://www.microsoft.com/downloads/details.aspx?FamilyID=60deac2b-975b-41e6-9fa0-

c2fd6aa6bc89&displaylang=en.

---. 2008a. Robocopy. http://technet.microsoft.com/en-us/library/cc733145.aspx.

---. 2008b. Download details: Automated Installation Kit (AIK) for Windows Vista SP1 and

Windows Server 2008. April 9.

http://www.microsoft.com/downloads/details.aspx?FamilyId=94BB6E34-D890-4932-

81A5-5B50C657DE08&displaylang=en.

70

---. 2008c. Windows Deployment Services Step-by-Step Guide. May 8.

http://technet.microsoft.com/en-us/library/cc771670.aspx.

---. 2008d. Windows Deployment Services Processes. May 8. http://technet.microsoft.com/en-

us/library/cc753356.aspx.

---. 2008e. Performing Unattended Installations. May 8. http://technet.microsoft.com/en-

us/library/cc771830.aspx.

---. 2008f. Using Transport Server. May 8. http://technet.microsoft.com/en-

us/library/cc725964.aspx#Common.

---. 2008g. Active Directory Service Interfaces (Windows). August 12.

http://msdn.microsoft.com/en-us/library/aa772170.aspx.

Nakajima, Jun. 2007. Hybrid Virtualization - The Next Generation of XenLinux. In .

http://www.valinux.co.jp/documents/tech/presentlib/2007/2007xenconf/Intel.pdf.

Sadler, Jez. 2007. transport server : Setup Deployment : Windows Server : Microsoft TechNet

Forums. November 7. http://social.technet.microsoft.com/Forums/en-

US/winserversetup/thread/ac931db7-efc4-4848-8ade-3aadac1453cd.

Silvert, William. 2001. Modelling as a Discipline. International Journal of General Systems 30:

261-282. http://www.informaworld.com/smpp/content?file.txt.

Stackpole, Bill, Jason Koppe, Tom Haskell, Laura Guay, and Yin Pan. 2008. Decentralized

Virtualization in Systems Administration Education. In SIGITE '08. August 23.

Stockman, Mark, John Nyland, and William Weed. 2005. Centrally-stored and delivered virtual

machines in the networking/system administration lab. SIGITE Newsl. 2, no. 2: 4-6.

doi:10.1145/1072968.1072969. http://portal.acm.org/citation.cfm?id=1072968.1072969.

Sugerman, Jeremy, Ganesh Venkitachalam, Beng-Hong Lim, and VMware, Inc. 2001.

Virtualizing I/O Devices on VMware Workstation's Hosted Virtual Machine Monitor. In .

Boston, MA, June 25.

Symantec. 2008. Ghost Solution Suite: Rapid and reliable Windows Vista migration solution |

Symantec. http://www.symantec.com/business/ghost-solution-suite.

VMware, Inc. 2008a. Guest Operating System Installation Guide.

http://www.vmware.com/pdf/GuestOS_guide.pdf.

---. 2008b. VMware Workstation Documentation.

http://www.vmware.com/support/pubs/ws_pubs.html.

---. 2008c. VMware ACE Enterprise Desktop Management, Virtual Machines - VMware.

http://www.vmware.com/products/ace/.

71

Vollrath, Adam, and Steven Jenkins. 2004. Using virtual machines for teaching system

administration. J. Comput. Small Coll. 20, no. 2: 287-292.

http://portal.acm.org/citation.cfm?id=1040189&dl=GUIDE&coll=GUIDE&CFID=34707

486&CFTOKEN=32122091.

	Table of Contents
	Table of Figures
	Table of Tables
	Acknowledgements
	Introduction
	Problem
	Importance
	Review of current research
	Document Outline

	Background
	Research Design
	Assumptions and Limitations
	Environment Overview
	Network Services
	Workstation Deployment
	Virtual Machine Templates
	Using the Environment

	Optimizing Restoration Time
	Direct Modification Characterization
	Workstation Capabilities

	Results and Analyses
	Optimizing Restoration Time
	Direct Modification Characterization
	Workstation Capabilities

	Conclusions
	Future Work
	Appendices
	Restoration Result Database
	diffVirtResult.ps1
	batchanalyze.ps1
	starttest.ps1
	massImage.ps1
	default.xml
	useradd.pl
	startnet.cmd

	References

